Skip to main content
Log in

Elucidating the effect of nitrocellulose-encapsulated MgAl–CuO on the thermal behavior of double base propellant based on nitrocellulose and diethylene glycol dinitrate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study aims to elucidate the potential effect of encapsulated nanothermite on the characteristics and thermo-kinetic features of double base NC/DEGDN propellant. Nitrocellulose was used as a coating material to encapsulate the MgAl–CuO nanothermite, creating a core–shell structure. The prepared energetic formulations were subjected to thorough characterization using various techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetry analysis, calvet calorimeter analyses, and differential scanning calorimetry (DSC). Experimental results confirmed the uniform distribution of the nitrocellulose-encapsulated MgAl–CuO (NC@MgAl–CuO) particles within the NC/DEGDN matrix. DSC findings highlighted that the addition of NC@MgAl–CuO nanothermite significantly increased the total heat release of the NC/DEGDN propellant from 3787 to 4175 J/g. The kinetic parameters associated with the thermal decomposition of the developed energetic formulations were also predicted using isoconversional kinetic methods, including (TAS, it-KAS, and VYA). Thermokinetic findings demonstrated the notable impact of MgAl–CuO particles coated with NC on the reactivity and catalytic behavior of NC/DEGDN propellant. Specifically, the Arrhenius parameters of NC/DEGDN formulation is decreased by 32% when the NC@MgAl–CuO nanothermite was introduced. Overall, this study serves as a valuable reference for future research focused on the investigation of coated metastable intermolecular composites and their effects on the reactivity and combustion features of solid propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data supporting the findings of this study are available within the article.

References

  1. Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35(2):141–167

    Article  CAS  Google Scholar 

  2. Kabra S, Gharde S, Gore PM, Jain S, Khire VH, Kandasubramanian B (2020) Recent trends in nanothermites: fabrication, characteristics and applications. Nano Express 1(3):032001

    Article  Google Scholar 

  3. Jacob RJ, Hill KJ, Yang Y, Pantoya ML, Zachariah MR (2019) Pre-stressing aluminum nanoparticles as a strategy to enhance reactivity of nanothermite composites. Combust Flame 205:33–40

    Article  CAS  Google Scholar 

  4. Comet M, Martin C, Schnell F, Spitzer D (2017) Nanothermite foams: from nanopowder to object. Chem Eng J 316:807–812

    Article  CAS  Google Scholar 

  5. Zaky MG, Abdalla AM, Sahu RP, Puri IK, Radwan M, Elbasuney S (2019) Nanothermite colloids: a new prospective for enhanced performance. Def Technol 15(3):319–325

    Article  Google Scholar 

  6. He W, Liu PJ, He GQ, Gozin M, Yan QL (2018) Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater 30(41):1706293

    Article  Google Scholar 

  7. Monk I, Schoenitz M, Jacob R, Dreizin E, Zachariah M (2017) Combustion characteristics of stoichiometric Al-CuO nanocomposite thermites prepared by different methods. Combust Sci Technol 189(3):555–574

    Article  CAS  Google Scholar 

  8. Ma X, Li Y, Hussain I, Shen R, Yang G, Zhang K (2020) Core–shell structured nanoenergetic materials: preparation and fundamental properties. Adv Mater 32(30):2001291

    Article  CAS  Google Scholar 

  9. Fahd A, Dubois C, Chaouki J, Wen JZ (2023) Nanothermites: developments and future perspectives. Nano Micro-Scale Energ Mater 1:219–251

    Article  Google Scholar 

  10. Hu B, Zhang W, Yu C, Zheng Z, Chen Y, Wang J, Liu J, Ma K, Ren W (2019) Electrochemical synthesis of Al/CuO thermite films on copper substrates. Ind Eng Chem Res 58(17):7131–7138

    Article  CAS  Google Scholar 

  11. Qin L, Gong T, Hao H, Wang K, Feng H (2013) Core–shell-structured nanothermites synthesized by atomic layer deposition. J Nanopart Res 15(12):1–15

    Article  Google Scholar 

  12. Comet M, Martin C, Schnell F, Spitzer D (2019) Nanothermites: a short review. Factsheet for experimenters, present and future challenges. Propellants Explos Pyrotech 44(1):18–36

    Article  CAS  Google Scholar 

  13. Shen L, Li G, Luo Y, Gao K, Ge Z (2014) Preparation and characterization of Al/B/Fe2O3 nanothermites. Science China Chem 57(6):797–802

    Article  CAS  Google Scholar 

  14. Wang Y, Xu J, Shen Y, Wang C-A, Zhang Z, Li F, Cheng J, Ye Y, Shen R (2022) Fabrication of energetic aluminum core/hydrophobic shell nanofibers via coaxial electrospinning. Chem Eng J 427:132001

    Article  CAS  Google Scholar 

  15. Dreizin E, Schoenitz M, Chintersingh K, Mursalat M, Valluri S, Hastings D (2019) New materials prepared by arrested reactive milling and mechanisms of their ignition and combustion. In: International symposium on self-propagating high-temperature synthesis

  16. Singh S, Singh G, Kulkarni N, Mathe V, Bhoraskar S (2015) Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite. J Therm Anal Calorim 119:309–317

    Article  CAS  Google Scholar 

  17. Zhao N, He C, Liu J, Gong H, An T, Xu H, Zhao F, Hu R, Ma H, Zhang J (2014) Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. J Solid State Chem 219:67–73

    Article  CAS  Google Scholar 

  18. Dreizin EL, Schoenitz M (2017) Mechanochemically prepared reactive and energetic materials: a review. J Mater Sci 52:11789–11809

    Article  CAS  Google Scholar 

  19. Trache D, DeLuca LT (2020) Nanoenergetic materials: preparation, properties, and applications. Nanomaterials 10:2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussein AK, Zaki MG, Elbeih A (2022) Influence of a novel nano-thermite colloid based on CuO coated CNTs on the thermo-analytical characteristics of 1, 3, 5-trinitro-1, 3, 5-triazinane. Combust Sci Technol 195:1–13

    Google Scholar 

  21. Ke X, Zhou X, Gao H, Hao G, Xiao L, Chen T, Liu J, Jiang W (2018) Surface functionalized core/shell structured CuO/Al nanothermite with long-term storage stability and steady combustion performance. Mater Des 140:179–187

    Article  CAS  Google Scholar 

  22. Wang J, Qiao Z, Yang Y, Shen J, Long Z, Li Z, Cui X, Yang G (2016) Core-shell al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chemistry 22(1):279–284

    Article  CAS  PubMed  Google Scholar 

  23. Misenan M, Norrrahim MNF, Saad MM, Shaffie A, Zulkipli N, Farabi MA (2023) Recent advances in nitrocellulose-based composites. Synthetic and natural nanofillers in polymer composites. Elsevier, Amsterdam, pp 399–415

    Chapter  Google Scholar 

  24. Eslami A, Hosseini SG, Bazrgary M (2013) Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim 113:721–730

    Article  CAS  Google Scholar 

  25. Touidjine S, Boulkadid MK, Trache D, Belkhiri S, Mezroua A, Fertassi MA (2023) Understanding the compatibility of nitrocellulose with polyester based polyurethane binder. J Energy Mater 41(2):192–211

    Article  CAS  Google Scholar 

  26. Liu C, Li X, Li R, Yang Q, Zhang H, Yang B, Yang G (2020) Laser ignited combustion of graphene oxide/nitrocellulose membranes for solid propellant micro thruster and solar water distillation. Carbon 166:138–147

    Article  CAS  Google Scholar 

  27. Gilbert MS (2019) Cellulose-based products and derivatives. In: Liew KC (ed) Prospects and utilization of tropical plantation trees. CRC Press, Boca Raton, pp 223–239

    Chapter  Google Scholar 

  28. Dai J, Xu J, Wang F, Tai Y, Shen Y, Shen R, Ye Y (2018) Facile formation of nitrocellulose-coated Al/Bi2O3 nanothermites with excellent energy output and improved electrostatic discharge safety. Mater Des 143:93–103

    Article  CAS  Google Scholar 

  29. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396

    Article  CAS  Google Scholar 

  30. Tarchoun AF, Trache D, Klapötke TM, Krumm B, Khimeche K, Mezroua A (2020) A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization. Carbohydr Polym 249:116820

    Article  CAS  PubMed  Google Scholar 

  31. Trache D, Tarchoun AF (2019) Analytical methods for stability assessment of nitrate esters-based propellants. Crit Rev Anal Chem 49(5):415–438

    Article  CAS  PubMed  Google Scholar 

  32. Ye B, An C, Wang J, Li H, Ji W, Gao K (2016) Preparation and characterization of RDX-based composite with glycidyl azide polymers and nitrocellulose. J Propul Power 32(4):1036–1040

    Article  Google Scholar 

  33. Tarchoun AF, Trache D, Klapötke TM, Krumm B, Mezroua A, Derradji M, Bessa W (2021) Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose 28(10):6107–6123

    Article  CAS  Google Scholar 

  34. Mezroua A, Hamada RA, Brahmine KS, Abdelaziz A, Tarchoun AF, Boukeciat H, Bekhouche S, Bessa W, Benhammada A, Trache D (2022) Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim Acta 716:179305

    Article  CAS  Google Scholar 

  35. Bekhouche S, Trache D, Abdelaziz A, Tarchoun AF, Chelouche S, Boudjellal A, Mezroua A (2023) Preparation and characterization of MgAl-CuO ternary nanothermite system by arrested reactive milling and its effect on the thermocatalytic decomposition of cellulose nitrate. Chem Eng J 453:139845

    Article  CAS  Google Scholar 

  36. Eslami A, Hosseini SG, Asadi V (2009) The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat 65(2):269–274

    Article  CAS  Google Scholar 

  37. Koga N, Vyazovkin S, Burnham AK, Favergeon L, Muravyev NV, Perez-Maqueda LA, Saggese C, Sánchez-Jiménez PE (2022) ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim Acta 719:179384

    Article  Google Scholar 

  38. Vyazovkin S, Achilias D, Fernandez-Francos X, Galukhin A, Sbirrazzuoli N (2022) ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics. Thermochim Acta 714:179243

    Article  CAS  Google Scholar 

  39. Trache D, Abdelaziz A, Siouani B (2017) A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim 128(1):335–348

    Article  CAS  Google Scholar 

  40. Pourmortazavi SM, Mirzajani V, Farhadi K (2019) Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim 137(1):93–104

    Article  CAS  Google Scholar 

  41. Vyazovkin S (2015) Some basics en route to isoconversional methodology. Isoconversional kinetics of thermally stimulated processes. Springer, New York, pp 1–25

    Chapter  Google Scholar 

  42. Zhang C, Binienda WK, Zeng L, Ye X, Chen S (2011) Kinetic study of the novolac resin curing process using model fitting and model-free methods. Thermochim Acta 523(1–2):63–69

    Article  CAS  Google Scholar 

  43. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  44. Sbirrazzuoli N (2020) Determination of pre-exponential factor and reaction mechanism in a model-free way. Thermochim Acta 691:178707

    Article  CAS  Google Scholar 

  45. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A (2019) Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta 673:78–91

    Article  CAS  Google Scholar 

  46. Trache D, Maggi F, Palmucci I, DeLuca LT (2018) Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim 132:1601–1615

    Article  CAS  Google Scholar 

  47. Dourari M, Tarchoun AF, Trache D, Abdelaziz A, Bekhouche S, Harrat A, Boukeciat H, Matmat N (2022) Unraveling the effect of MgAl/CuO nanothermite on the characteristics and thermo-catalytic decomposition of nanoenergetic formulation based on nanostructured nitrocellulose and hydrazinium nitro-triazolone. Catalysts 12(12):1573

    Article  CAS  Google Scholar 

  48. Tarchoun AF, Trache D, Abdelaziz A, Harrat A, Boukecha WO, Hamouche MA, Boukeciat H, Dourari M (2022) Elaboration, characterization and thermal decomposition kinetics of new nanoenergetic composite based on hydrazine 3-nitro-1, 2, 4-triazol-5-one and nanostructured cellulose nitrate. Molecules 27(20):6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim JH, Cha JK, Cho MH, Kim H, Shim H-M, Kim SH (2019) Thermal reactions of nitrocellulose-encapsulated Al/CuO nanoenergetic materials fabricated in the gas and liquid phases. Mater Chem Phys 238:121955

    Article  CAS  Google Scholar 

  50. Dai J, Wang C, Wang Y, Xu W, Xu J, Shen Y, Zhang W, Ye Y, Shen R (2020) From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@ NC onto semiconductor bridge and its application for rapid ignition. Nanotechnology 31(19):195712

    Article  CAS  PubMed  Google Scholar 

  51. Trache D, Tarchoun AF (2019) Differentiation of stabilized nitrocellulose during artificial aging: spectroscopy methods coupled with principal component analysis. J Chemom 33(8):e3163

    Article  Google Scholar 

  52. Tarchoun AF, Trache D, Klapötke TM, Abdelaziz A, Derradji M, Bekhouche S (2022) Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: towards the next generation of energetic biopolymers. Def Technol 18(4):537–546

    Article  Google Scholar 

  53. Chen L, Li L, Li G (2008) Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compds 464(1–2):532–536

    Article  CAS  Google Scholar 

  54. Kloprogge JT, Hickey L, Frost RL (2004) FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J Raman Spectrosc 35(11):967–974

    Article  CAS  Google Scholar 

  55. Panda H, Srivastava R, Bahadur D (2008) Shape and size control of nano dispersed Mg/Al layered double hydroxide. J Nanosci Nanotechnol 8(8):4218–4223

    Article  CAS  PubMed  Google Scholar 

  56. Buszek RJ, Soto D, Dailey JM, Bolden S, Tall TL, Hudgens LM, Marshall CA, Boatz JA, Drake GW (2018) Structures and binding energies of nitrate plasticizers DEGDN, TEGDN, and nitroglycerine. Propellants Explos Pyrotech 43(2):115–121

    Article  CAS  Google Scholar 

  57. Yahya PKI, Moniruzzaman M, Gill PP (2019) Interaction and thermal studies on graphene oxide in NC/DEGDN/GO nanocomposites. RSC Adv 9(60):35158–35164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei W, Jiang X, Lu L, Yang X, Wang X (2009) Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant. J Hazard Mater 168(2–3):838–842

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Jiang L, Dong J, Li B, Shen J, Chen L, Fu Y, He W (2020) Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. J Market Res 9(6):15094–15101

    CAS  Google Scholar 

  60. Kumar A, Chavan PV, Sadavarte VS, Bhowmik D, Mada SS, Pande SM (2020) Studies on the effect of nitrate esters on the properties of advanced energetic propellants. Cent Eur J Energ Mater 17(3):384–407

    Article  CAS  Google Scholar 

  61. Benhammada A, Trache D (2020) Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev 55(8):724–777

    Article  CAS  Google Scholar 

  62. Heckman H, Kepley VL, Mahanthappa MK, McQueen A, Mullen K (2015) Investigation of cellulose nitrate motion picture film chemical decomposition & associated fire risk

  63. Katoh K, Ito S, Kawaguchi S, Higashi E, Nakano K, Ogata Y, Wada Y (2010) Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim 100(1):303–308

    Article  CAS  Google Scholar 

  64. Guo S, Wang Q, Sun J, Liao X, Wang Z-S (2009) Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater 168(1):536–541

    Article  CAS  PubMed  Google Scholar 

  65. Elbasuney S, Yehia M, Ismael S, Saleh A, Fahd A, El-Shaer Y (2021) Nitrocellulose catalyzed with nanothermite particles: advanced energetic nanocomposite with superior decomposition kinetics. J Energ Mater. https://doi.org/10.1080/07370652.2021.2004625

    Article  Google Scholar 

  66. Staley CS, Raymond KE, Thiruvengadathan R, Apperson SJ, Gangopadhyay K, Swaszek SM, Taylor RJ, Gangopadhyay S (2013) Fast-impulse nanothermite solid-propellant miniaturized thrusters. J Propul Power 29(6):1400–1409

    Article  CAS  Google Scholar 

  67. Trache D, Khimeche K (2013) Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater 37(4):328–336

    Article  CAS  Google Scholar 

  68. Zhu H, Dong K, Huang J, Li J, Wang G, Xie Z (2014) Reaction mechanism and mechanical properties of an aluminum-based composite fabricated in-situ from Al–SiO2 system. Mater Chem Phys 145(3):334–341

    Article  CAS  Google Scholar 

  69. Yao E, Zhao N, Qin Z, Ma H, Li H, Xu S, An T, Yi J, Zhao F (2020) Thermal decomposition behavior and thermal safety of nitrocellulose with different shape CuO and Al/CuO nanothermites. Nanomaterials 10(4):725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Benhammada A, Trache D, Kesraoui M, Chelouche S (2020) Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 10(5):968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benhammada A, Trache D, Chelouche S (2023) Catalytic effect investigation of α-Fe2O3 and α-Fe2O3-CMS nanocomposites on the thermal behavior of NC/DEGDN mixture: DSC measurements and kinetic modeling. J Indian Chem Soc 100(1):100838

    Article  CAS  Google Scholar 

  72. Yang Y, Wang P-P, Zhang Z-C, Liu H-L, Zhang J, Zhuang J, Wang X (2013) Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci Rep 3(1):1–6

    CAS  Google Scholar 

  73. El-Sayed SA (2022) Review of thermal decomposition, kinetics parameters and evolved gases during pyrolysis of energetic materials using different techniques. J Anal Appl Pyrol 161:105364

    Article  CAS  Google Scholar 

  74. Jena MK, Kumar V, Liu S, Vuthaluru H (2022) Steam gasification of low-rank coal chars: Insights into the kinetic compensation effects and physical significance of kinetic parameters. Chem Eng J Adv 11:100306

    Article  CAS  Google Scholar 

  75. Tarchoun AF, Sayah ZBD, Trache D, Klapötke TM, Belmerabt M, Abdelaziz A, Bekhouche S (2022) Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J Nanostruct Chem 12(5):963–977

    Article  CAS  Google Scholar 

  76. Mianowski A, Radko T, Siudyga T (2021) Kinetic compensation effect of isoconversional methods. React Kinet Mech Cat 132:37–58

    Article  CAS  Google Scholar 

  77. Wang Y, Dai J, Xu J, Shen Y, Wang C-A, Ye Y, Shen R (2021) Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. Vacuum 184:109878

    Article  CAS  Google Scholar 

  78. Norrrahim MNF, Kasim NAM, Knight VF, Ujang FA, Janudin N, Razak MAIA, Shah NAA, Noor SAM, Jamal SH, Ong KK (2021) Nanocellulose: the next super versatile material for the military. Mater Adv 2(5):1485–1506

    Article  Google Scholar 

  79. Fahd A, Baranovsky A, Dubois C, Chaouki J, Wen JZ (2021) Superior performance of quaternary NC/GO/Al/KClO4 nanothermite for high speed impulse small-scale propulsion applications. Combust Flame 232:111527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research by the Ecole Militaire Polytechnique is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Fouzi Tarchoun.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2107 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dourari, M., Tarchoun, A.F., Trache, D. et al. Elucidating the effect of nitrocellulose-encapsulated MgAl–CuO on the thermal behavior of double base propellant based on nitrocellulose and diethylene glycol dinitrate. Reac Kinet Mech Cat 136, 2309–2325 (2023). https://doi.org/10.1007/s11144-023-02448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02448-2

Keywords

Navigation