Skip to main content
Log in

Influence of synthesis procedures on the preparation of strontium titanate nanoparticles and photocatalytic application for methylene blue degradation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

SrTiO3 is a well-known photocatalyst with various applications, such as antibacterial agents, self-cleaning surfaces, and water and air conditioning. With the increased environmental pollution, SrTiO3 is one of the most studied perovskite photocatalysts, exhibiting pronounced photocatalytic activity for removing chemical pollutants and water splitting. In the present work, pure Strontium titanate (ST) nanoparticles were successfully prepared using high-energy ball milling and Pechini techniques and characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared spectroscopy (FTIR), scanning and transmission electron microscopy, respectively. Structural parameters were evaluated by Rietveld refinement analysis from XRD data, which confirmed the cubic system of SrTiO3 with Pm-3 m space group. Scanning electron microscope results showed that ST1 samples consisted of agglomerated and irregular-shaped structures between 20 and 40 nm, and in ST2, the particles were round-shaped and had an average size of 150 nm. The obtained nanoparticles were used for photocatalytic methylene blue (MB) degradation, and synthesis methods' influence on catalytic activity was investigated. The photocatalytic studies examining the decoloration of MB dye reveal the function of smaller particles in increasing the rate of reactions. The degradation rate constant of MB on the ST1 (Pechini-synthesized sample) and ST2 (high energy ball milled sample) is 0.0145 and 0.0112 min−1, respectively. The better photocatalytic activity of the ST1 demonstrated 93% degradation of dye under the solar light simulator. The photocatalytic reaction data provided well a first-order kinetic model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The supplementary material includes the FTIR spectra and the EDX analysis of ST1 and ST2 samples.

References

  1. Javaid R, Qazi UY (2019) Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int J Environ Res Public Health 16:1–27. https://doi.org/10.3390/ijerph16112066

    Article  CAS  Google Scholar 

  2. Konstas PS, Konstantinou I, Petrakis D, Albanis T (2018) Development of SrTiO3 photocatalysts with visible light response using amino acids as dopant sources for the degradation of organic pollutants in aqueous systems. Catalysts 8:16–20. https://doi.org/10.3390/catal8110528

    Article  CAS  Google Scholar 

  3. Qazi IR, Lee WJ, Lee HC, Hassan MS, Yang OB (2010) Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles. J Nanosci Nanotechnol 10:3430–3434. https://doi.org/10.1166/jnn.2010.2326

    Article  CAS  PubMed  Google Scholar 

  4. Zhang N, Zheng Y, Li J, Du Z, Cheng F (2022) Enhanced photocatalytic and settling performance of a mesoporous graphene/titanium oxide composite for wastewater treatment. Reac Kinet Mech Cat 135:3331–3342. https://doi.org/10.1007/s11144-022-02323-6

    Article  CAS  Google Scholar 

  5. Wu MC, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz A, Kónya Z, Keiski R, Su WF, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res 4:360–369. https://doi.org/10.1007/s12274-010-0090-9

    Article  CAS  Google Scholar 

  6. Nasr S (2022) Application of silver doped titanate nanotubes in the degradation of methylene blue and the degradation of fungus and bacteria. Experimental and theoretical studies. Reac Kinet Mech Cat 135:2879–2893. https://doi.org/10.1007/s11144-022-02267-x

    Article  CAS  Google Scholar 

  7. Lončarević D, Dostanić J, Radonjić V, Živković LJ, Jovanović DM (2016) Simultaneous photodegradation of two textile dyes using TiO2 as a catalyst. Reac Kinet Mech Cat 118:153–164. https://doi.org/10.1007/s11144-016-0990-0

    Article  CAS  Google Scholar 

  8. Kerkez Ö, Boz I (2013) Efficient removal of methylene blue by photocatalytic degradation with TiO2 nanorod array thin films. Reac Kinet Mech Cat 110:543–557. https://doi.org/10.1007/s11144-013-0616-8

    Article  CAS  Google Scholar 

  9. Brik A, Naama S, Hadjersi Tk, El Amine M, Benamar SB, Manseri A (2020) Photodegradation of methylene blue under UV and visible light irradiation by Er2O3-coated silicon nanowires as photocatalyst. Reac Kinet Mech Cat 131:525–536. https://doi.org/10.1007/s11144-020-01862-0

    Article  CAS  Google Scholar 

  10. Van Benthem K, Elsässer C, French RH (2001) Bulk electronic structure of SrTiO3: experiment and theory. J Appl Phys 90:6156–6164. https://doi.org/10.1063/1.1415766

    Article  CAS  Google Scholar 

  11. Wong CPP, Lai CW, Lee KM, Pan GT, Chong KB, Johan MR, Juan JC, Yang TCK (2021) A high-capacity of oxygen induced SrTiO3 cathode material for rechargeable Alkaline Zinc battery. Mater Sci Semicond Process 130:105802. https://doi.org/10.1016/j.mssp.2021.105802

    Article  CAS  Google Scholar 

  12. Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, Meyer DC (2014) Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources 267:700–705. https://doi.org/10.1016/j.jpowsour.2014.05.095

    Article  CAS  Google Scholar 

  13. Marschall R (2021) 50 years of materials research for photocatalytic water splitting. Eur J Inorg Chem 2021:2435–2441. https://doi.org/10.1002/ejic.202100264

    Article  CAS  Google Scholar 

  14. Liu H, Chen X, Yan S, Li Z, Zou Z (2014) Basic molten salt route to prepare porous SrTiO3 nanocrystals for efficient photocatalytic hydrogen production. Eur J Inorg Chem 2014:3731–3735. https://doi.org/10.1002/ejic.201402280

    Article  CAS  Google Scholar 

  15. Márquez-Herrera A, Ovando-Medina VM, Castillo-Reyes BE, Meléndez-Lira M, Zapata-Torres M, Saldana N (2014) A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity. J Nanopart Res 16:2804. https://doi.org/10.1007/s11051-014-2804-5

    Article  CAS  Google Scholar 

  16. Oral B, Saadetnejad D, Yıldırım R (2020) Photocatalytic hydrogen production on chemically etched strontium titanate surfaces. Reac Kinet Mech Cat 131:953–963. https://doi.org/10.1007/s11144-020-01872-y

    Article  CAS  Google Scholar 

  17. Vento-Lujano E, González LA (2021) Defect-induced modification of band structure by the insertion of Ce3+ and Ce4+ in SrTiO3: a high-performance sunlight-driven photocatalyst. Appl Surf Sci 569:151044. https://doi.org/10.1016/j.apsusc.2021.151044

    Article  CAS  Google Scholar 

  18. Makarova M, Dejneka A, Franc J, Drahokoupil J, Jastrabik L, Trepakov V (2010) Soft chemistry preparation methods and properties of strontium titanate nanoparticles. Opt Mater (Amst) 32:803–806. https://doi.org/10.1016/j.optmat.2010.01.007

    Article  CAS  Google Scholar 

  19. Panthong P, Klaytae T, Boonma K, Thountom S (2013) Preparation of SrTiO3 nanopowder via sol-gel combustion method. Ferroelectrics 455:29–34. https://doi.org/10.1080/00150193.2013.843412

    Article  CAS  Google Scholar 

  20. Pongtippitak B, Thountom S (2017) Preparation of crystalline SrTiO3 powders by sol-gel and solid-state reaction hybrid method. Ferroelectrics 519:100–105. https://doi.org/10.1080/00150193.2017.1361225

    Article  CAS  Google Scholar 

  21. Fuentes S, Zarate RA, Chavez E, Muñoz P, Díaz-Droguett D, Leyton P (2010) Preparation of SrTiO3 nanomaterial by a sol-gel-hydrothermal method. J Mater Sci 45:1448–1452. https://doi.org/10.1007/s10853-009-4099-y

    Article  CAS  Google Scholar 

  22. Kiran KS, Shashanka R, Lokesh SV (2022) Enhanced photocatalytic activity of hydrothermally synthesized perovskite strontium titanate nanocubes. Top Catal. https://doi.org/10.1007/s11244-021-01558-2

    Article  Google Scholar 

  23. Srilakshmi C, Saraf R, Shivakumara C (2018) Structural studies of multifunctional SrTiO3 nanocatalyst synthesized by microwave and oxalate methods: its catalytic application for condensation, hydrogenation, and amination reactions. ACS Omega 3:10503–10512. https://doi.org/10.1021/acsomega.8b01255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Yang L, Wang Y (2012) Synthesis of SrTiO3 nanoparticles by a simple sonochemical method. Adv Mat Res 424–425:949–952. https://doi.org/10.4028/www.scientific.net/AMR.424-425.949

    Article  CAS  Google Scholar 

  25. Canu G, Buscaglia V (2017) Hydrothermal synthesis of strontium titanate: thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 19:3867–3891. https://doi.org/10.1039/c7ce00834a

    Article  CAS  Google Scholar 

  26. Huang BS, Wey MY (2014) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol-gel process. J Nanopart Res 16:2178. https://doi.org/10.1007/s11051-013-2178-0

    Article  CAS  Google Scholar 

  27. Peschke SL, Ciftcioglu M, Doughty DH, Voigt JA (1992) Preparation of strontium titanate powders by decomposition of polymeric precursors. MRS Proc 271:101–106. https://doi.org/10.1557/proc-271-101

    Article  CAS  Google Scholar 

  28. Moreira ML, Andrés J, Longo VM, Li MS, Varela JA, Longo E (2009) Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films. Chem Phys Lett 473:293–298. https://doi.org/10.1016/j.cplett.2009.03.021

    Article  CAS  Google Scholar 

  29. Klaytae T, Panthong P, Boonma K, Thountom S (2013) Fuel additives and heat treatment effect on the structure and morphology of strontium titanate nanopowders prepared by the sol-gel combustion method. Ferroelectrics 453:62–67. https://doi.org/10.1080/00150193.2013.842110

    Article  CAS  Google Scholar 

  30. Kulak AI, Sohrabi Anaraki H, Gaponenko NV, Khoroshko LS, Kholov PA, Raichyonok TF (2017) Optical characteristics of strontium titanate films formed by sol-gel method on quartz substrates. J Appl Spectrosc 84:132–135. https://doi.org/10.1007/s10812-017-0439-x

    Article  CAS  Google Scholar 

  31. Dhaneshwari Devi A, Sharma HB, Sarma HNK (2004) Sol-gel processed strontium titanate ceramics. Ferroelectr Lett Sect 31:73–78. https://doi.org/10.1080/07315170490480911

    Article  CAS  Google Scholar 

  32. Pfaff G (1993) Sol-gel synthesis of strontium titanate powders of various compositions. J Mater Chem 3:721–724. https://doi.org/10.1039/JM9930300721

    Article  CAS  Google Scholar 

  33. Selvaraj U, Prasadarao AV, Komarneni S, Roy R (1991) Sol-gel thin films of SrTiO3 from chemically modified alkoxide precursors. Mater Lett 12:311–315. https://doi.org/10.1016/0167-577X(91)90107-H

    Article  CAS  Google Scholar 

  34. Kimijima T, Kanie K, Nakaya M, Muramatsu A (2014) Solvothermal synthesis of SrTiO3 nanoparticles precisely controlled in surface crystal planes and their photocatalytic activity. Appl Catal B 144:462–467. https://doi.org/10.1016/j.apcatb.2013.07.051

    Article  CAS  Google Scholar 

  35. Cuya J, Sato N, Yamamoto K, Takahashi H, Muramatsu A (2004) Thermogravimetric study of the sulfurization of SrTiO3 nanoparticles using CS2. Thermochim Acta 419:215–221. https://doi.org/10.1016/j.tca.2004.01.033

    Article  CAS  Google Scholar 

  36. Al-Hadidi M, Goss JP, Briddon PR, Al-Hamadany R, Ahmed M, Rayson MJ (2015) Carbon impurities in SrTiO3 from first principles. Model Simul Mat Sci Eng. https://doi.org/10.1088/0965-0393/23/1/015002

    Article  Google Scholar 

  37. Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match

  38. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B: Phys Condens Matter 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  39. F. Menges (2023) “Spectragryph - optical spectroscopy software”, Version 1.2.16, http://www.effemm2.de/spectragryph/

  40. Deng Y, Shu S, Fang N, Wang R, Chu Y, Liu Z, Cen W (2023) One-pot synthesis of SrTiO3-SrCO3 heterojunction with strong interfacial electronic interaction as a novel photocatalyst for water splitting to generate H2. Chinese Chem Lett 34:107323. https://doi.org/10.1016/j.cclet.2022.03.046

    Article  CAS  Google Scholar 

  41. Wang TX, Chen WW (2008) Solid phase preparation of submicron-sized SrTiO3 crystallites from SrO2 nanoparticles and TiO2 powders. Mater Lett 62:2865–2867. https://doi.org/10.1016/j.matlet.2008.01.062

    Article  CAS  Google Scholar 

  42. Kobayashi M, Suzuki Y, Goto T, Cho SH, Sekino T, Asakura Y, Yin S (2018) Low-temperature hydrothermal synthesis and characterization of SrTiO3 photocatalysts for NOx degradation. J Ceram Soc Jpn 126:135–138. https://doi.org/10.2109/jcersj2.17195

    Article  CAS  Google Scholar 

  43. Leite ER, Sousa CMG, Longo E, Varela JA (1995) Influence of polymerization on the synthesis of SrTiO3: Part I. Characteristics of the polymeric precursors and their thermal decomposition. Ceram Int 21:143–152. https://doi.org/10.1016/0272-8842(95)90903-V

    Article  CAS  Google Scholar 

  44. Longo VM, Costa MDGS, Simões AZ, Rosa ILV, Santos COP, Andrés J, Longo E, Varela JA (2010) On the photoluminescence behavior of samarium-doped strontium titanate nanostructures under UV light. A structural and electronic understanding. Phys Chem Chem Phys 12:7566–7579. https://doi.org/10.1039/b923281h

    Article  CAS  PubMed  Google Scholar 

  45. Cho SG, Johnson PF, Condrate RA (1990) Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process. J Mater Sci 25:4738–4744. https://doi.org/10.1007/BF01129934

    Article  CAS  Google Scholar 

  46. Park JK, Ryu H, Park HD, Choi SY (2001) Synthesis of SrTiO3:Al, Pr phosphors from a complex precursor polymer and their luminescent properties. J Eur Ceram Soc 21:535–543. https://doi.org/10.1016/S0955-2219(00)00238-7

    Article  CAS  Google Scholar 

  47. Aravinthkumar K, Praveen E, Jacquline Regina Mary A, Raja Mohan C (2022) Investigation on SrTiO3 nanoparticles as a photocatalyst for enhanced photocatalytic activity and photovoltaic applications. Inorg Chem Commun 140:109451. https://doi.org/10.1016/j.inoche.2022.109451

    Article  CAS  Google Scholar 

  48. Hiroatsu M, Tatsuo M (1967) Infrared spectra and molecular vibrations of ethylene glycol and deuterated derivatives. B Chem Soc Jpn 40:85–94. https://doi.org/10.1246/bcsj.40.85

    Article  Google Scholar 

  49. Haoue S, Derdar H, Belbachir M, Harrane A (2020) Polymerization of ethylene glycol dimethacrylate ((EGDM), using an algerian clay as eco-catalyst (maghnite-h+ and maghnite-na+). Bull Chem React Engi Catal 15:221–230. https://doi.org/10.9767/bcrec.15.1.6297.221-230

    Article  CAS  Google Scholar 

  50. Hiranmayee V, Ananthasivan K, Maji D, Joseph K (2019) Microwave-assisted citrate gel-combustion synthesis of nanocrystalline urania Microwave-assisted citrate gel-combustion synthesis of nanocrystalline urania. J Nucl Mater 516:73–83. https://doi.org/10.1016/j.jnucmat.2018.12.031

    Article  CAS  Google Scholar 

  51. Kakihana M, Okubo T, Arima M et al (1998) Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures: implication for formation of Sr-Ti heterometallic citric acid complex. J Solgel Sci Technol 12:95–109. https://doi.org/10.1023/A:1008613312025

    Article  CAS  Google Scholar 

  52. Rocha-Rangel E, Pech-Rodríguez WJ, López-Hernández J et al (2020) Synthesis of SrTiO3 by the calcination of SrCO3 and TiO2 mixtures intensively ground by means of high energy milling. Arch Metall Mater 65:621–626. https://doi.org/10.24425/amm.2020.132801

    Article  CAS  Google Scholar 

  53. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  54. Ji H, Jeong S, Hyun J, Hong S, Kyun C, Kim D, Sohn Y (2021) Materials Science in Semiconductor Processing Photocatalytic and photoelectrocatalytic properties of Eu ( III ) -doped perovskite SrTiO3 nanoparticles with dopant level approaches. Mater Sci Semicond Process 132:105919. https://doi.org/10.1016/j.mssp.2021.105919

    Article  CAS  Google Scholar 

  55. Kumar V, Choudhary S, Malik V, Nagarajan R, Kandasami A, Subramanian A (2019) Enhancement in photocatalytic activity of SrTiO3 by tailoring particle size and defects. Phys Status Solidi A 216:1–11. https://doi.org/10.1002/pssa.201900294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Scientific Research Project Office of Manisa Celal Bayar University (Project no: 2021-012). This paper's analyses were partially performed at Manisa Celal Bayar University (Turkey)- Applied Science and Research Center (DEFAM).

Funding

This work was supported by the Scientific Research Project Office of the Manisa Celal Bayar University (Project No. 2021-012).

Author information

Authors and Affiliations

Authors

Contributions

PSA: designed and directed the project. PSA and EA: performed the experiments and analysis. All authors contributed to the analysis of the results and the manuscript's writing.

Corresponding author

Correspondence to Pelin Sözen Aktaş.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1078 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, E., Aktaş, P.S. Influence of synthesis procedures on the preparation of strontium titanate nanoparticles and photocatalytic application for methylene blue degradation. Reac Kinet Mech Cat 136, 1107–1123 (2023). https://doi.org/10.1007/s11144-023-02375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02375-2

Keywords

Navigation