Skip to main content
Log in

Application of silver doped titanate nanotubes in the degradation of methylene blue and the degradation of fungus and bacteria. Experimental and theoretical studies

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 26 August 2022

This article has been updated

Abstract

The aim of this work is to study the degradation of methylene blue (MB) by using heterogeneous catalysts based on titanate nanotubes doped with silver nanoparticles. The titanate nanotubes (TNTs) are prepared by the hydrothermal method while the doping of the silver species is carried out by impregnation at different silver contents (1, 5 and 10 wt%). Different methods are used in the characterization of materials and are: X-ray diffraction, Raman spectroscopy, UV–visible in reflection diffuse and Scanning Electron Microscopy, Transmission Electron Microscopy and Scanning electron microscopy. The characterization of the obtained materials leads to the conclusion that silver nanoparticles of size of the order of 2 nm are distributed on the surface of the TNTs in a homogeneous manner. However, the catalytic test reveals that the prepared catalysts have a strong ability to absorb and degrade methylene blue. Total degradation rates are obtained with a significant mineralization of the order of 66% for the catalyst at 10% Ag-TNTs. DFT calculations are carried out in order to identify the most fragile sites in the MB molecule and whose radical attack can take place. Finally, silver-doped catalysts show interesting activities towards the inhibition of bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Rasheed T, Shafi S, Bilal M, Hussain T, Sher F, Rizwan K (2020) J Mol Liq 318:113960

    Article  CAS  Google Scholar 

  2. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Sustainable. Mater Technol 9:10–40

    Google Scholar 

  3. Sreekantan S, Wei LC (2010) J Alloys Compd 490:436–442

    Article  CAS  Google Scholar 

  4. Ji H, Ni J, Zhao D, Liu W (2022). ACS ES&T Eng. https://doi.org/10.1021/acsestengg.1c00451

    Article  Google Scholar 

  5. Liu S-S, Lee C-K, Chen H-C, Wang C-C, Juang L-C (2009) Chem Eng J 147:188–193

    Article  CAS  Google Scholar 

  6. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) J Nanopart Res 15:1–18

    Article  Google Scholar 

  7. Chaker H, Fourmentin S, Chérif-Aouali L (2020) Chem Select 5:11787–11796

    CAS  Google Scholar 

  8. Li P, Wang J, Wang Y, Liang J, He B, Pan D, Fan Q, Wang X (2019) Chem Eng J 365:231–241

    Article  CAS  Google Scholar 

  9. Saien J, Asgari M, Soleymani A, Taghavinia N (2009) Chem Eng J 151:295–301

    Article  CAS  Google Scholar 

  10. Chen C-C (2007) J Mol Catal A: Chem 264:82–92

    Article  CAS  Google Scholar 

  11. Guzman M, Dille J, Godet S (2012) Nanotechnol Biol Med 8:37–45

    Article  CAS  Google Scholar 

  12. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) http://www.gaussian.com.

  13. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099

    Article  CAS  Google Scholar 

  14. Preda S, Teodorescu VS, Musuc AM, Andronescu C, Zaharescu M (2013) J Mater Res 28:294–303

    Article  CAS  Google Scholar 

  15. Reddy CV, Babu B, Reddy IN, Shim J (2018) Ceram Int 44:6940–6948

    Article  CAS  Google Scholar 

  16. Kim S-J, Yun Y-U, Oh H-J, Hong SH, Roberts CA, Routray K, Wachs IE (2010) J Phys Chem Lett 1:130–135

    Article  CAS  Google Scholar 

  17. Sandoval A, Hernández-Ventura C, Klimova TE (2017) Fuel 198:22–30

    Article  CAS  Google Scholar 

  18. Hormozi Nezhad M, Tashkhourian J, Khodaveisi J (2010) J Iran Chem Soc 7:S83–S91

    Article  Google Scholar 

  19. Zhang W, Li X, Jia G, Gao Y, Wang H, Cao Z, Li C, Liu J (2014) Catal Com 45:144–147

    Article  CAS  Google Scholar 

  20. Xu D, Feng L, Lei A (2009) J Colloid Interface Sci 329:395–403

    Article  CAS  Google Scholar 

  21. Wang Q, Lei X, Pan F, Xia D, Shang Y, Sun W, Liu W (2018) Colloids Surf A 555:605–614

    Article  CAS  Google Scholar 

  22. Xiong L, Sun W, Yang Y, Chen C, Ni J (2011) J Colloid Interface Sci 356:211–216

    Article  CAS  Google Scholar 

  23. Abdul Rahman NR, Muniandy L, Adam F, Iqbal A, Ng EP, Lee HL (2019) J Photochem Photobiol, A 375:219–230

    Article  CAS  Google Scholar 

  24. Nguyen CH, Juang R-S (2019) J Ind Eng Chem 76:296–309

    Article  CAS  Google Scholar 

  25. Lima DS, Cruz JC, Luciano VA, Nascimento MA, Teixeira APC, Lopes RP (2021) Appl Surf Sci 563:150313

    Article  CAS  Google Scholar 

  26. Sun P, Liu L, Cui S-C, Liu J-G (2014) Catal Lett 144:2107–2113

    Article  CAS  Google Scholar 

  27. Shaban M, Ahmed AM, Shehata N, Betiha MA, Rabie AM (2019) J Colloid Interface Sci 555:31–41

    Article  CAS  Google Scholar 

  28. Ameur N, Brahimi FT, Bensaada N, Gouhas H, Ferouani G (2020) Chem Select 5:13550–13558

    CAS  Google Scholar 

  29. Khan MM, Ansari SA, Ansari MO, Min BK, Lee J, Cho MH (2014) J Phys Chem C 118:9477–9484

    Article  CAS  Google Scholar 

  30. Fandi Z, Ameur N, Brahimi FT, Bedrane S, Bachir R (2020) J Environ Chem Eng 8:104346

    Article  CAS  Google Scholar 

  31. Viet PV, Phan BT, Mott D, Maenosono S, Sang TT, Thi CM, Hieu LV (2018) J Photochem Photobiol A 352:106–112

    Article  CAS  Google Scholar 

  32. Boudghene-Guerriche A, Chaker H, Aissaoui M, Chikhi I, Saidi-Bendahou K, Moukhtari-Soulimane N, Fourmentin S (2020) Chem Select 5:11078–11084

    CAS  Google Scholar 

  33. Dong P, Yang F, Cheng X, Huang Z, Nie X, Xiao Y, Zhang X (2019) Mater Sci Eng C 96:197–204

    Article  CAS  Google Scholar 

  34. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  35. Besinis A, Hadi SD, Le H, Tredwin C, Handy R (2017) Nanotoxicology 11:327–338

    Article  CAS  Google Scholar 

  36. Verma C, Quraishi M, Olasunkanmi L, Ebenso EE (2015) RSC Adv 5:85417–85430

    Article  CAS  Google Scholar 

  37. Olasunkanmi LO, Sebona MF, Ebenso EE (2017) J Mol Struct 1149:549–559

    Article  CAS  Google Scholar 

  38. Verma C, Olasunkanmi L, Obot I, Ebenso EE, Quraishi M (2016) RSC adv 6:15639–15654

    Article  CAS  Google Scholar 

  39. Gupta NK, Verma C, Quraishi M, Mukherjee A (2016) J Mol Liq 215:47–57

    Article  CAS  Google Scholar 

  40. Obi-Egbedi N, Obot I, El-Khaiary MI (2011) J Mol Struct 1002:86–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Larg Groups Project under grant number (RGP.2/213/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Nasr.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication of the article Acknowledgements section was not included.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, S. Application of silver doped titanate nanotubes in the degradation of methylene blue and the degradation of fungus and bacteria. Experimental and theoretical studies. Reac Kinet Mech Cat 135, 2879–2893 (2022). https://doi.org/10.1007/s11144-022-02267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02267-x

Keywords

Navigation