Skip to main content
Log in

Enhanced photocatalytic and settling performance of a mesoporous graphene/titanium oxide composite for wastewater treatment

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A reduced graphene oxide-P25 (rGO-P25) composite was synthesized by one-step hydrothermal method. The photocatalytic degradation of Rhodamine B (RhB) by the rGO-P25 composite and its settling performance was investigated with P25 as a control. The results showed that the rGO-P25 composite has a mesoporous structure, with the average particle size increased from 4.99 to 399.0 µm, and the specific surface area of the composite increased from 54.0 to 74.3 m2/g. The rGO-P25 composite has a much better photocatalytic and settling performance as compared to P25, which were 1.56 and 2.4 times higher. The increased photocatalytic performance by the rGO-P25 composite was mainly attributed to the increased adsorption capacity and charge transfer ability due to the introduction of rGO flakes in the composite. However, the improved settling performance mainly lies on the increase of the average particle size. The electron spin resonance (ESR) results shows that hydroxyl radical, superoxide radical and photogenerated hole were all generated in the degradation of RhB but the hydroxyl radicals are the leading reactive oxygen species. The as-synthesized rGO-P25 composite showed a good recycling ability as RhB degradation rate could still reach 98.6% after five times reuse. This study indicates that the rGO-P25 composite is a promising photocatalyst for practical wastewater treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chong MN, Jin B, Chow CW, Saint C (2010) Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  2. Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z (2021) Nanomaterials 11:1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo Q, Zhou C, Ma Z, Yang X (2019) Adv Mater 31(50):1901997

    Article  CAS  Google Scholar 

  4. Saravanan A, Kumar PS, Vo DN, Yaashikaa PR, Karishma S, Jeevanantham S, Gayathri B, Bharathi VD (2020) Environ Chem Lett 19:441–463

    Article  Google Scholar 

  5. Wu HY, Wu XL, Wang ZM, Aoki H, Kutsuna S, Jimura K, Hayashi S (2017) Appl Catal B Environ 207:255–266

    Article  CAS  Google Scholar 

  6. Yosaka N, Nosaka AY (2017) Chem Rev 117:11302–11336

    Article  Google Scholar 

  7. He DY, Yang H, Jin DX, Qu J, Yuan X, Zhang YN, Huo MX, Peijnenburg WJGM (2021) Appl Catal B Environ 285:119864

    Article  CAS  Google Scholar 

  8. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) J Environ Chem Eng 7:103248

    Article  CAS  Google Scholar 

  9. Luna-Sanguino G, Ruiz-Delgado A, Tolosana-Moranchel A, Pascual L, Malato S, Bahamonde A, Faraldos M (2020) Sci Total Environ 737:140286

    Article  PubMed  Google Scholar 

  10. Zhang Y, Zhou Z, Chen Y, Wang H, Lu W (2014) J Environ Sci (China) 26(2014):2114–2122

    Article  Google Scholar 

  11. Tang Y, Zhang G, Liu C, Luo S, Xu X, Chen L, Wang B (2013) J Hazard Mater 252–253:115–122

    Article  PubMed  Google Scholar 

  12. Bai H, Zhou J, Zhang H, Tang G (2017) Colloids Surf B Biointerfaces 150:68–77

    Article  CAS  PubMed  Google Scholar 

  13. Zhu XD, Zhou DM, Wang YJ, Cang L, Fang GD, Fan JX (2012) J Soil Sedim 12:1371–1379

    Article  CAS  Google Scholar 

  14. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) ACS Nano 4:380–386

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Zhou SL, Hong GB, Chang CT (2013) Chem Eng J 219:486–491

    Article  CAS  Google Scholar 

  16. Luna-Sanguino G, Tolosana-Moranchel A, Duran-Valle C, Faraldos M, Bahamonde A (2019) Catal Today 328:172–177

    Article  CAS  Google Scholar 

  17. Zhu WJ, Mi JY, Fu YQ, Cui DH, Lv CL (2021) Appl Surf Sci 538:148087

    Article  CAS  Google Scholar 

  18. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hubner U (2018) Water Res 139:118–131

    Article  CAS  PubMed  Google Scholar 

  19. Liu YL, Chen KQ, Xiong MY, Zhou P, Peng ZY, Yang GJ, Cheng YQ, Wang RB, Chen W (2014) RSC Adv 4:43760–43765

    Article  CAS  Google Scholar 

  20. Tolosana-Moranchel A, Faraldos M, Bahamonde A, Pascual L, Bahnemann DW (2019) J Photochem Photobiol A Chem 386:112112

    Article  Google Scholar 

  21. Chenab KK, Sohrabi B, Jafari A, Ramakrishna S (2020) Mater Today Chem 16:100262

    Article  CAS  Google Scholar 

  22. Ribao P, Rivero MJ, Ortiz I (2017) Environ Sci Pollut R 25:34893–34902

    Article  Google Scholar 

  23. Chen Y, Gao H, Xiang JJ, Dong XJ, Cao Y (2018) Mater Res Bull 99:29–36

    Article  CAS  Google Scholar 

  24. Pu SH, Long DB, Liu ZH, Yang FY, Zhu JM (2018) Catalysts 8:189

    Article  Google Scholar 

  25. Huh SH (2011). In: Mikhailov S (ed) Thermal reduction of graphene oxide, physics and applications of graphene-experiments. InTech, New York

    Google Scholar 

  26. Sher MS, Park AR, Zhang K, Park JH, Yoo PJ (2012) ACS Appl Mater Interfaces 48:3893–3901

    Article  Google Scholar 

  27. Kurniawan TA, Zhu MT, Dun F, Yeap SK, Othman MHD, Avtar R, Ouyang T (2020) J Environ Manag 270:110871

    Article  CAS  Google Scholar 

  28. Liu Z, Robinson JT, Sun XM, Dai HJ (2008) J Am Chem Soc 130(33):10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, Zhang K (2011) J Mol Catal A Chem 345(1–2):101–107

    Article  CAS  Google Scholar 

  30. Lente G (2015) Deterministic kinetics in chemistry and systems biology the dynamics of complex reaction networks. Springer Cham, Berlin

    Google Scholar 

  31. Sun XQ, Ji SD, Wang MQ, Dou JJ, Yang Z, Qiu HW, Kou S, Ji YQ, Wang H (2020) J Alloys Compd 819:153033

    Article  CAS  Google Scholar 

  32. Ruidíaz-Martínez M, Álvarez MA, López-Ramón MV, Cruz-Quesada G, Rivera-Utrilla J, Sánchez-Polo M (2020) Catalysts 10:520

    Article  Google Scholar 

  33. Padmanabhan NT, Thomas N, Louis J, Mathew DT, Ganguly P, John H (2021) Chemosphere 271:129506

    Article  CAS  PubMed  Google Scholar 

  34. He WW, Kim HK, Wamer WG, Melka DC, Callahan JH, Yin JJ (2014) J Am Chem Soc 136(2):750–757

    Article  CAS  PubMed  Google Scholar 

  35. Jia HM, He WW, Wamer WG, Han XN, Zhang BB, Zhang SR, Zheng Z, Xiang Y, Yin JJ (2014) J Phys Chem C 118:21447–21456

    Article  CAS  Google Scholar 

  36. Schrauben JN, Hayoun R, Valdez CN, Braten M, Fridley L, Mayer JM (2012) Science 336:298–1301

    Article  Google Scholar 

  37. Tamtaji M, Kazemeini M (2022) Reac Kinet Mech Cat 135:2851–2865

    Article  CAS  Google Scholar 

  38. Lettieri S, Gargiulo V, Pallotti DK, Vitiello G, Maddalena P, Alfè M, Marotta R (2018) Catal Today 315:19–30

    Article  CAS  Google Scholar 

  39. Xia Y, Cheng B, Fan JJ, Yu JG, Liu G (2019) Small 15:1902459

    Article  Google Scholar 

  40. Fan LQ, Zheng Y, Li JF, Du ZP, Ren J, Sun HF, Zhao HZ, Cheng FQ (2022) Chem Eng J 450(4):138278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by National Key R&D Program of China (2019YFC0408600), The Key Science and Technology Program of Shanxi Province (202101090301012), National Special Fund for Science and Technology Development of Local Government of China (YDZX20191400002539) and Shanxi Scholarship Council of China (2020-152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 33232 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zheng, Y., Li, J. et al. Enhanced photocatalytic and settling performance of a mesoporous graphene/titanium oxide composite for wastewater treatment. Reac Kinet Mech Cat 135, 3331–3342 (2022). https://doi.org/10.1007/s11144-022-02323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02323-6

Keywords

Navigation