Skip to main content
Log in

Kinetic advantage of inner sphere electron transfer reactions of copper(III,II) peptide complexes with cyano complexes of iron, molybdenum and tungsten

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

An inner sphere electron transfer process via a cyanide bridge is proposed for the reactions of Cu(III,II) peptide complexes with Fe(CN)3−,4−6, Mo(CN)3−,4−8 and W(CN)3−,4−8. Cu(III) peptide complexes were generated electrolytically from the Cu(II) precursors. The direction of spontaneous reactions is such that Fe(CN)4−6 and W(CN)4−8 reduce Cu(III) peptide complexes and Mo(CN)3−8 oxidizes Cu(II) peptide complexes at pH ca. 10. However, since all reactions are equilibrium processes, by the very fast continuous decomposition of the reduced Cu(II) product in a slightly acidic reaction medium (pH 5), the Mo(CN)4−8 reduction of Cu(III) peptide complexes could be driven to completion and studied kinetically. Kinetically determined equilibrium constants and electrochemically calculated equilibrium constants are mutually consistent. The experimentally observed inner sphere rate constants, kis, for these reactions are significantly larger than the corresponding outer sphere rate constant, kos, for the outer sphere electron transfer processes calculated with the Marcus theory, with or without work terms. It is concluded that if the kinetic advantage kis/kos is substantially larger than 1, it provides evidence for an inner sphere reaction pathway. The magnitude of the kinetic advantage of the present redox reactions varies from 1 to 63 and is dependent on the metal-to-metal distance in the cyanide-bridged intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haim A (1983) Prog Inorg Chem 30:273

    CAS  Google Scholar 

  2. Taube H, Myers H, Rich RL (1953) J Am Chem Soc 75:4118

    CAS  Google Scholar 

  3. Kumar K, Rotzinger FP, Endicott JF (1983) J Am Chem Soc 105:7064

    CAS  Google Scholar 

  4. Gangopadhyay S, Saha SK, Ali M, Banerjee P (1991) Int J Chem Kinet 23:105

    CAS  Google Scholar 

  5. Naik RM, Kumar B, Rai J, Rastogi R, Yadav SBS (2010) Eur J Chem 7:S391

    CAS  Google Scholar 

  6. Linck RG (1976) Surv Prog Chem 7:89

    CAS  Google Scholar 

  7. Marcus RA (1963) J Phys Chem 67:853

    CAS  Google Scholar 

  8. Marcus RA (1964) Ann Rev Phys Chem 15:155

    CAS  Google Scholar 

  9. Marcus RA (1965) J Chem Phys 43:679

    CAS  Google Scholar 

  10. Owens GD, Margerum DW (1981) Inorg Chem 20:1446

    CAS  Google Scholar 

  11. Koval CA, Margerum DW (1981) Inorg Chem 20:2311

    CAS  Google Scholar 

  12. Anast JM, Margerum DW (1982) Inorg Chem 21:3494

    CAS  Google Scholar 

  13. Margerum DW (1983) Pure Appl Chem 55:23

    CAS  Google Scholar 

  14. Murray CK, Margerum DW (1983) Inorg Chem 22:463

    CAS  Google Scholar 

  15. Owens GD, Phillips DA, Czarmeclo JJ, Raycheba JMT, Margerum DW (1984) Inorg Chem 23:1345

    CAS  Google Scholar 

  16. Endicott JF, Kumar K, Ramasami T, Rotzinger FP (1983) Prog Inorg Chem 30:141

    CAS  Google Scholar 

  17. Konig E (1962) Theor Chim Acta 1:23

    Google Scholar 

  18. Endicott JF, Chen Y (2013) Coord Chem Rev 257:1676

    CAS  Google Scholar 

  19. Perumareddi JR, Liehra AD, Adamson AW (1963) J Am Chem Soc 85:249

    CAS  Google Scholar 

  20. McGarvey BR (1966) Inorg Chem 5:476

    CAS  Google Scholar 

  21. Hayes RG (1966) J Chem Phys 44:2210

    CAS  Google Scholar 

  22. Adamson AW, Gonick E (1963) Inorg Chem 2:129

    CAS  Google Scholar 

  23. Huchital OH, Wilkins RG (1967) Inorg Chem 6:1022

    CAS  Google Scholar 

  24. Diaddario LL, Robinson WR, Margerum DW (1983) Inorg Chem 22:1021

    CAS  Google Scholar 

  25. Youngblood MP, Margerum DW (1980) Inorg Chem 19:3068

    CAS  Google Scholar 

  26. Bossu FP, Margerum DW (1977) Inorg Chem 16:1210

    CAS  Google Scholar 

  27. Lappin AG, Murry CK, Margerum DW (1978) Inorg Chem 17:1630

    CAS  Google Scholar 

  28. Dennis CR, Swarts JC, Margerum DW (2012) React Kinet Mech Catal 107:27

    CAS  Google Scholar 

  29. Dennis CR, Swarts JC, Langner EHG (2018) Transit Met Chem 43:387

    CAS  Google Scholar 

  30. Kirksey ST, Neubecker TA, Margerum DW (1979) J Am Chem Soc 101:1631

    CAS  Google Scholar 

  31. Leipoldt JG, Bok LDC, Cilliers PJ (1974) Z Anorg Allg Chem 407:350

    CAS  Google Scholar 

  32. Leipoldt JG, Bok LDC, Cilliers PJ (1974) Z Anorg Allg Chem 409:343

    CAS  Google Scholar 

  33. Dennis CR, Van Wyk AJ, Basson SS, Leipoldt JG (1992) Transit Met Chem 17:471

    CAS  Google Scholar 

  34. Basson SS, Bok LDC, Grobler SR (1974) Fresenius’ Anal Chem 268:287

    CAS  Google Scholar 

  35. Vogel AI (1972) Quantitative chemical analysis including elementary instrumental analysis, 3rd edn. Longman, London

    Google Scholar 

  36. Hamburg AW, Nemeth MT, Margerum DW (1983) Inorg Chem 22:3535

    CAS  Google Scholar 

  37. Hamburg AW, Margerum DW (1983) Inorg Chem 22:3884

    CAS  Google Scholar 

  38. Gáspár V, Beck MT (1982) Abstracts of XXII international conference on coordination chemistry, Budapest, Hungary, p 316

  39. Jacobs SA, Nemeth MT, Kramer GW, Ridley TY, Margerum DW (1984) Anal Chem 56:1058

    CAS  PubMed  Google Scholar 

  40. Nemeth MT, Fogelman KD, Ridley TY, Margerum DW (1987) Anal Chem 59:283

    CAS  Google Scholar 

  41. Fogelman KD, Walker DM, Margerum DW (1989) Inorg Chem 28:986

    CAS  Google Scholar 

  42. Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes. VCH Publishers Inc, New York, p p11

    Google Scholar 

  43. Owens GR, Chellappa KL, Margerum DW (1979) Inorg Chem 18:960

    CAS  Google Scholar 

  44. Campion RJ, Purdie N, Sutin N (1964) Inorg Chem 3:1091

    CAS  Google Scholar 

  45. Haim A, Sutin N (1976) Inorg Chem 15:476

    CAS  Google Scholar 

  46. Chou M, Creutz C, Sutin N (1977) J Am Chem Soc 99:5615

    CAS  Google Scholar 

  47. Dennis CR, Van Wyk AJ, Basson SS, Leipoldt JG (1987) Inorg Chem 26:270

    CAS  Google Scholar 

  48. Marcus RA (1957) J Chem Phys 26:867

    CAS  Google Scholar 

  49. Anast JM, Hamburg AW, Margerum DW (1983) Inorg Chem 22:2139

    CAS  Google Scholar 

  50. Margerum DW, Cayley GR, Weatherburn DC, Pagenkopf GR (1978) ACS Monogr 174:1

    CAS  Google Scholar 

  51. Ibers JA, Davidson N (1951) J Am Chem Soc 73:476

    CAS  Google Scholar 

  52. Leipoldt JG, Bok LDC, Dennis CR (1976) J Inorg Nucl Chem 38:1655

    CAS  Google Scholar 

  53. Leipoldt JG, Bok LDC, Van Wyk AJ, Dennis CR (1977) J Inorg Nucl Chem 39:2019

    CAS  Google Scholar 

Download references

Acknowledgements

This work has received support from the South African National Research Foundation [Grant Nos. 105725 (EF) and 96123 (JCS)] and the Central Research Fund of the University of the Free State, Bloemfontein, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Robert Dennis.

Additional information

This paper is dedicated to Professor Dale William Margerum for his significant contribution to research in Reaction Kinetics and Mechanism. Professor Margerum passed away on 14 August 2019 at the age of 89 years.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennis, C.R., Fourie, E., Margerum, D.W. et al. Kinetic advantage of inner sphere electron transfer reactions of copper(III,II) peptide complexes with cyano complexes of iron, molybdenum and tungsten. Transit Met Chem 45, 147–157 (2020). https://doi.org/10.1007/s11243-019-00356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00356-w

Navigation