Skip to main content
Log in

Fabrication of palladium and platinum nanocatalysts stabilized by polyvinylpyrrolidone and their use in the hydrogenolysis of methyl orange

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Following the thermal reductive method, the synthesis of nanoparticles stabilized by polyvinylpyrrolidone was performed using ethylene glycol as a reductant and solvent. The PVP-capped platinum and palladium were well-dispersed and stable for more than 3 months, and their average sizes were 2.53 ± 0.07 nm and 4.13 ± 0.14 nm. By means of inductively coupled plasma mass spectroscopy (ICP-MS) analysis, the amount of colloidal metal nanoparticles was found to be 6.38 wt% and 5.93 wt% for platinum and palladium, respectively. The PVP-capped Pt and Pd nanocatalysts were evaluated for the hydrogenolysis of azo dyes using methyl orange as a model compound in the presence of borohydride as a reductant. Substrates adsorption on the nanocatalysts surface constituted the rate-determining step of the catalytic reduction. The Langmuir–Hinshelwood approach was applied to interpret the interface interaction between nanocatalyst and substrates. The activation energy was 65.70 ± 4.49 kJ mol−1 and 89.27 ± 2.12 kJ mol−1 using Pt and Pd nanocatalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Gupta VK, Khamparia S, Tyagi I, Jaspal D, Malviya A (2015) Decolorization of a mixture of dyes: a critical review. Glob J Environ Sci Manag 1:71–94

    CAS  Google Scholar 

  2. Morel OJX, Christie RM (2011) Current trends in the chemistry of permanent hair dyeing. Chem Rev 111:2537–2561

    Article  CAS  PubMed  Google Scholar 

  3. Chigrinov V, Kwok HS, Takada H, Takatsu H (2005) Photo-aligning by azo-dyes: physics and applications. Liq Cryst Today 14:1–15

    Article  CAS  Google Scholar 

  4. Bahmani SA, East GC, Holme I (2000) The application of chitosan in pigment printing. Color Technol 116:94–99

    Article  CAS  Google Scholar 

  5. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93:154–168

    Article  CAS  Google Scholar 

  6. Tian Y, Wang G, Li F, Evans DG (2007) Synthesis and thermo-optical stability of O-methyl red-intercalated Ni–Fe layered double hydroxide material. Mater Lett 61:1662–1666

    Article  CAS  Google Scholar 

  7. Park H, Kim E-R, Kim DJ, Lee H (2002) Synthesis of metal-azo dyes and their optical and thermal properties as recording materials for DVD-R. Bull Chem Soc Jpn 75:2067–2070

    Article  CAS  Google Scholar 

  8. de Lima ROA, Bazo AP, Salvadori DMF, Rech CM, de Palma Oliveira D, de Aragão Umbuzeiro G (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Toxicol Environ Mutagen 626:53–60

    Article  CAS  Google Scholar 

  9. de Aragao UG, Freeman HS, Warren SH, De Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere 60:55–64

    Article  CAS  Google Scholar 

  10. Ilunga AK, Khoza T, Tjabadi E, Meijboom R (2017) Effective catalytic reduction of methyl orange catalyzed by the encapsulated random alloy palladium-gold nanoparticles dendrimer. ChemistrySelect 2:9803–9809

    Article  CAS  Google Scholar 

  11. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  PubMed  Google Scholar 

  12. Szyguła A, Guibal E, Palacín MA, Ruiz M, Sastre AM (2009) Removal of an anionic dye (Acid Blue 92) by coagulation-flocculation using chitosan. J Environ Manag 90:2979–2986

    Article  CAS  Google Scholar 

  13. Han TH, Khan MM, Kalathil S, Lee J, Cho MH (2013) Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Ind Eng Chem Res 52:8174–8181

    Article  CAS  Google Scholar 

  14. Polzer F, Wunder S, Lu Y, Ballauff M (2012) Oxidation of an organic dye catalyzed by MnOx nanoparticles. J Catal 289:80–87

    Article  CAS  Google Scholar 

  15. Ilunga AK, Meijboom R (2016) Catalytic oxidation of methylene blue by dendrimer encapsulated silver and gold nanoparticles. J Mol Catal A Chem 411:48–60

    Article  CAS  Google Scholar 

  16. Xu D, Diao P, Jin T, Wu Q, Liu X, Guo X, Gong H, Li F, Xiang M, Ronghai Y (2015) Iridium oxide nanoparticles and iridium/iridium oxide nanocomposites: photochemical fabrication and application in catalytic reduction of 4-nitrophenol. ACS Appl Mater Interfaces 7:16738–16749

    Article  CAS  PubMed  Google Scholar 

  17. Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46:3655–3670

    Article  CAS  PubMed  Google Scholar 

  18. Huang Q, Liu W, Peng P, Huang W (2013) Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts. Chemosphere 92:1321–1327

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Liu J, Wang P, Werth CJ, Strathmann TJ (2014) Palladium nanoparticles encapsulated in core–shell silica: a structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catal 4:3551–3559

    Article  CAS  Google Scholar 

  20. Xu H, Xiao Y, Xu M, Cui H, Tan L, Feng N, Liu X, Qiu G, Dong H, Xie J (2018) Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology 30:65607

  21. Ncube P, Bingwa N, Baloyi H, Meijboom R (2015) Catalytic activity of palladium and gold dendrimer-encapsulated nanoparticles for methylene blue reduction: a kinetic analysis. Appl Catal A Gen 495:63–71

    Article  CAS  Google Scholar 

  22. Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2009) Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis. Langmuir 26:1271–1277

    Article  CAS  Google Scholar 

  23. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  CAS  PubMed  Google Scholar 

  24. Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Catal A Chem 198:317–341

    Article  CAS  Google Scholar 

  25. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  PubMed  Google Scholar 

  26. Upadhyay PR, Srivastava V (2017) Ionic Liquid mediated in situ synthesis of Ru nanoparticles for CO2 hydrogenation reaction. Catal Lett 147:1051–1060

    Article  CAS  Google Scholar 

  27. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi N, Sakai Y, Tsunoyama H, Nakajima A (2014) Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: Catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone). Langmuir 30:10539–10547

    Article  CAS  PubMed  Google Scholar 

  29. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem Mater 12:1622–1627

    Article  CAS  Google Scholar 

  31. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202

    Article  CAS  PubMed  Google Scholar 

  32. Fan J, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166:904–910

    Article  CAS  PubMed  Google Scholar 

  33. Kumar KV, Porkodi K, Rocha F (2008) Langmuir-Hinshelwood kinetics—a theoretical study. Catal Commun 9:82–84

    Article  CAS  Google Scholar 

  34. Yu H, Zhu Y, Yang H, Nakanishi K, Kanamori K, Guo X (2014) Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Trans 43:12648–12656

    Article  CAS  PubMed  Google Scholar 

  35. An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696

    Article  CAS  PubMed  Google Scholar 

  36. Cuenya BR, Behafarid F (2015) Nanocatalysis: size-and shape-dependent chemisorption and catalytic reactivity. Surf Sci Rep 70:135–187

    Article  CAS  Google Scholar 

  37. Zhang H, Fu Q, Yao Y, Zhang Z, Ma T, Tan D, Bao X (2008) Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite. Langmuir 24:10874–10878

    Article  CAS  PubMed  Google Scholar 

  38. Chatenet M, Micoud F, Roche I, Chainet E, Vondrák J (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part II. O2 reduction. Electrochim Acta 51:5452–5458

    Article  CAS  Google Scholar 

  39. Chung K-T, Fulk GE, Andrews AW (1981) Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol 42:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61

    Article  CAS  Google Scholar 

  41. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. J Appl Polym Sci 92:1633–1645

    Article  CAS  Google Scholar 

  42. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  43. Barbero J, Peña MA, Campos-Martin JM, Fierro JLG, Arias PL (2003) Support effect in supported Ni catalysts on their performance for methane partial oxidation. Catal Lett 87:211–218

    Article  CAS  Google Scholar 

  44. Ilunga AK, Meijboom R (2018) A Review of dendrimer-encapsulated metal nanocatalysts applied in the fine chemical transformations. Catal Lett 149:84–991

    Article  CAS  Google Scholar 

  45. Hong S, Rahman TS (2013) Rationale for the higher reactivity of interfacial sites in methanol decomposition on Au13/TiO2 (110). J Am Chem Soc 135:7629–7635

    Article  CAS  PubMed  Google Scholar 

  46. Lo CF, Karan K, Davis BR (2007) Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind Eng Chem Res 46:5478–5484

    Article  CAS  Google Scholar 

  47. Ilyas M, Sadiq M (2007) Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by Pt/ZrO2. Chem Eng Technol 30:1391–1397

    Article  CAS  Google Scholar 

  48. Khenkin AM, Neumann R (2000) Low-temperature activation of dioxygen and hydrocarbon oxidation catalyzed by a phosphovanadomolybdate: evidence for a Mars–van Krevelen type mechanism in a homogeneous liquid phase. Angew Chem 39:4088–4090

    Article  CAS  Google Scholar 

  49. Yang CC, Mai Y-W (2014) Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R 79:1–40

    Article  Google Scholar 

  50. Lente G, Fábián I, Poë AJ (2005) A common misconception about the Eyring equation. New J Chem 29:759–760

    Article  CAS  Google Scholar 

  51. Formo E, Lee E, Campbell D, Xia Y (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8:668–672

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali K. Ilunga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilunga, A.K., Mamba, B.B. & Nkambule, T.T.I. Fabrication of palladium and platinum nanocatalysts stabilized by polyvinylpyrrolidone and their use in the hydrogenolysis of methyl orange. Reac Kinet Mech Cat 129, 991–1005 (2020). https://doi.org/10.1007/s11144-020-01746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01746-3

Keywords

Navigation