Skip to main content
Log in

Kinetics of ethanol steam reforming over Cu–Ni/NbxOy catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of ethanol steam reforming for hydrogen production was evaluated over copper–nickel–niobium catalyst employing differential conditions, so the kinetic parameters were directly obtained by experimental data fitting. A mechanism was proposed according to the production distribution for different contact times, which showed ethanol dehydrogenation followed by decomposition of intermediate acetaldehyde as the first reactions. Both surface dehydrogenation and decomposition reactions were assumed as rate determining steps besides the surface oxidation of intermediate methyl, and kinetic expressions were obtained. A power law model was also fitted to the experimental data. The dehydrogenation and decomposition models satisfactorily represented the experimental data, so they were assumed as possible reaction mechanisms. The surface oxidation of methyl was not consistent with experimental data. Although the power law presented a good correlation, it did not predict the partial blocking effect of acetaldehyde, observed with byproduct and product addition in the feed composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richardson IA, Fisher JT, Frome PE, Smith BO, Guo S, Chanda S, McFEELY MS, MILLER AM, Leachman JW (2015) Low-cost, transportable hydrogen fueling station for early market adoption of fuell cell electric vehicles. Int J Hydrogen Energy 40:8122–8127

    Article  CAS  Google Scholar 

  2. Gucciardi E, Chiodo V, Freni S, Cavallaro S, Galvagno A, Bart JCJ (2011) Ethanol and dimethyl ether steam reforming on Rh/Al2O3 catalysts for high-temperature fuel-cell feeds. Reac Kinet Mech Cat 104:75–87

    Article  CAS  Google Scholar 

  3. Liu F, Zhao L, Wang H, Bai X, Liu Y (2014) Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol. Int J Hydrog Energy 39:10454–10466

    Article  CAS  Google Scholar 

  4. Rossetti I, Compagnoni M, Torli M (2015) Process simulation and optimisation of H2 production from ethanol steam reforming and its use in fuel cells. 1. Thermodynamic and kinetic analysis. Chem Eng J 281:1024–1035

    Article  CAS  Google Scholar 

  5. Deshmane VG, Owen SL, Abrokwah RY, Kuila D (2015) Mesoporous nanocrystalline TiO2 supported metal (Cu Co, Ni, Pd, Zn, and Sn) catalysts: effect of metal–support interactions on steam reforming of methanol. J Mol Catal A 408:202–213

    Article  CAS  Google Scholar 

  6. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward understanding metal-catalyzed ethanol reforming. ACS Catal 5:3841–3863

    Article  CAS  Google Scholar 

  7. Mironova EY, Lytkina AA, Ermilova MM, Efimov MN, Zemtsov LM, Orekhova NV, Karpacheva GP, Bondarenko GN, Muraviev DN, Yaroslavtev AB (2015) Ethanol and methanol steam reforming on transition metal catalysts supported on detonation synthesis nanodiamonds for hydrogen production. Int J Hydrog Energy 40:3557–3565

    Article  CAS  Google Scholar 

  8. Trane-Restrup R, Dahl S, Jensen AD (2013) Steam reforming of ethanol: effects of support and additives on Ni-based catalysts. Int J Hydrog Energy 38:15105–15118

    Article  CAS  Google Scholar 

  9. Palma V, Ruocco C, Castaldo F, Ricca A, Boettge D (2015) Ethanol steam reforming over bimetallic coated ceramic foams: effect of reactor configuration and catalytic support. Int J Hydrog Energy 40:12650–12662

    Article  CAS  Google Scholar 

  10. Moura JS, Souza MOG, Bellido JDA, Assaf EM, Opportus M, Reyes P, Rangel MDC (2012) Ethanol steam reforming over rhodium and cobalt-based catalysts: effect of the support. Int J Hydrog Energy 37:3213–3224

    Article  CAS  Google Scholar 

  11. Wang K, Dou B, Jiang B, Zhang Q, Li M, Chen H, Xu Y (2016) Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. Int J Hydrog Energy 41:17334–17347

    Article  CAS  Google Scholar 

  12. Alves DA Silva, Dancini-Pontes F, Wurzler GT, Alonso CG, Neto AM, Scaliante MHNO, DeSOUZA M, Fernandes-Machado NRC (2016) Production of hydrogen from bioethanol in Cu–Ni/NbxOy catalysts obtained by different preparation methods. Int J Hydrog Energy 41:8111–8119

    Article  Google Scholar 

  13. Wurzler GT, Rabelo-Neto RC, Mattos LV, Fraga MA, Noronha FB (2016) Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts. Appl Catal A 518:115–128

    Article  CAS  Google Scholar 

  14. Barroso MN, Gomez MF, Arrúa LA, Abello MC (2015) Effect of the water-ethanol molar ratio in the ethanol steam reforming reaction over a Co/CeO2/MgAl2O4 catalyst. Reac Kinet Mech Cat 115:535–546

    Article  CAS  Google Scholar 

  15. Maia TA, Assaf JM, Assaf EM (2013) Performance of cobalt catalysts supported on CexZr1−xO2 (0 < x<1) solid solutions in oxidative ethanol reforming. Reac Kinet Mech Cat 109:181–197

    Article  CAS  Google Scholar 

  16. Saeki T, Ohkita H, Kakuta N, Mizushima T (2015) Synergistic effect of CeO2-supported bimetallic Ni–Cu, Co–Cu, and Ni–Fe catalysts on steam reforming of ethanol. J Ceram Soc Jpn 123:955–960

    Article  CAS  Google Scholar 

  17. Furtado AC, Alonso CG, Cantão MP, Fernandes-Machado NRC (2011) Support influence on Ni-Cu catalysts behavior under ethanol oxidative reforming reaction. Int J Hydrog Energy 36:9653–9662

    Article  CAS  Google Scholar 

  18. Dancini-Pontes I, DeSouza M, Silva FA, Scaliante MH, Alonso CG, Bianchi GS, Neto AM, Pereira GM, Fernandes-Machado NR (2015) Influence of CeO2 and Nb2O5 supports and the inert gas in ethanol steam reforming for H2 production. Chem Eng J 273:66–74

    Article  CAS  Google Scholar 

  19. Barroso MN, Gómez MF, Arrúa LA, Abello MC (2009) Steam reforming of ethanol over a NiZnAl catalyst. Influence of pre-reduction treatment with H2. Reac Kinet Catal Lett 97:27–33

    Article  CAS  Google Scholar 

  20. Sahoo DR, Vajpai S, Patel S, Pant KK (2007) Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst. Chem Eng J 125:139–147

    Article  CAS  Google Scholar 

  21. Llera I, Mas V, Bergamini ML, Laborde M, Amadeo N (2012) Bio-ethanol steam reforming on Ni based catalyst. Kinetic Study Chem. Eng. Sci. 71:356–366

    Article  CAS  Google Scholar 

  22. Patel M, Jindal TK, Pant KK (2013) Kinetic study of steam reforming of ethanol on Ni-based ceria-zirconia catalyst. Ind Eng Chem Res 52:15763–15771

    Article  CAS  Google Scholar 

  23. Wu YJ, Santos JC, Li P, Yu JG, Cunha AF, Rodrigues AE (2014) Simplified kinetic model for steam reforming of ethanol on Ni/Al2O3 catalyst. Can J Chem Eng 92:116–130

    Article  CAS  Google Scholar 

  24. Zhang C, Li S, Wu G, Huang Z, Han Z, Wang T, Gong J (2014) Steam reforming of ethanol over skeletal Ni-based catalysts: a temperature programmed desorption and kinetic study. AIChE J 60:635–644

    Article  CAS  Google Scholar 

  25. Ciambelli P, Palma V, Ruggiero A (2010) Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts. Appl Catal B 96:190–197

    Article  CAS  Google Scholar 

  26. Anderson JR (1975) Structure of metallic catalysts. Academic Press, London

    Google Scholar 

  27. Nurunnabi M, Li B, Kunimori K, Suzuki K, Fujimoto K, Tomishige K (2005) Performance of NiO-MgO solid solution-supported Pt catalysts in oxidative steam reforming of methane. Appl Catal A 292:272–280

    Article  CAS  Google Scholar 

  28. Han SJ, Song JHS, Bang Y, Yoo J, Park S, Kang KH, Song IK (2016) Hydrogen production by steam reforming of ethanol over mesoporous Cu–Ni–Al2O3–ZrO2 xerogel catalyst. Int J Hydrog Energy 41:2554–2563

    Article  CAS  Google Scholar 

  29. Vicente J, Ereña J, Montero C, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation. Int J Hydrog Energy 39:18820–18834

    Article  CAS  Google Scholar 

  30. Compagnoni M, Tripodi A, Rossetti I (2017) Parametric study and kinetic testing for ethanol steam reforming. Appl Catal 203:899–909

    Article  CAS  Google Scholar 

  31. Resini C, Cavallaro S, Frusteri F, Freni S, Busca G (2007) Initial steps in the production of H2 from ethanol: a FT-IR of adsorbed species on Ni/MgO catalyst surface. Reac Kinet Catal Lett 90:117–126

    Article  CAS  Google Scholar 

  32. Galvita VV, Belyaev VD, Semikolenov VA, Tsiakaras P, Frumin A, Sobyanin VA (2002) Ethanol decomposition over Pd-based catalyst in the presence of steam. React Kinet Catal Lett 76:343–351

    Article  CAS  Google Scholar 

  33. Zeng G, Li Y, Olsbye U (2016) Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts: the initial steps. Catal Today 259:312–322

    Article  CAS  Google Scholar 

  34. Kumar A, Ashok A, Bhosale RR, Saleh MAH, Almomani FA, Al-Marri M, Khader MM, Tarlochan F (2016) In situ DRIFTS studies on Cu, Ni and CuNi catalysts for ethanol decomposition reaction. Catal Lett 146:778–787

    Article  CAS  Google Scholar 

  35. Sivaramakrishnan R, Michael JV, Klippenstein SJ (2015) Direct observation of roaming radicals in the thermal decomposition of acetaldehyde. J Phys Chem A 114:755–764

    Article  Google Scholar 

  36. Maier L, Schädel B, Delgado KH, Tischer S, Deutschmann O (2011) Steam reforming of methane over nickel: development of a multi-step surface reaction mechanism. Top Catal 54:845–858

    Article  CAS  Google Scholar 

  37. Fajín JLC, Cordeiro MNDS, Illas F, Gomes RB (2009) Influence of step sites in the molecular mechanism of the water gas shift reaction catalyzed by Cooper. J Catal 268:131–141

    Article  Google Scholar 

  38. Silva AL, Malfatti CF, Müller IL (2009) Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: a detailed study of the conditions of carbon deposition. Int J Hydrog Energy 34:4321–4330

    Article  Google Scholar 

  39. Sharma PK, Saxena N, Roy PK, Bhatt A (2016) Hydrogen generation from ethanol by steam reforming using Rh catalyst supported over low acidic Al2O3. Reac Kinet Mech Cat 117:655–674

    Article  CAS  Google Scholar 

  40. Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alves da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.A., Dancini-Pontes, I., DeSouza, M. et al. Kinetics of ethanol steam reforming over Cu–Ni/NbxOy catalyst. Reac Kinet Mech Cat 122, 557–574 (2017). https://doi.org/10.1007/s11144-017-1210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1210-2

Keywords

Navigation