Skip to main content
Log in

Hydrogen generation from ethanol by steam reforming using a Rh catalyst supported over low acidic Al2O3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this paper, we have studied the effect of the synthesis method on the acidity of alumina (Al2O3) support using NH3 chemisorption and impregnated Rh on the Al2O3 support having lower acidity to yield Rh/Al2O3 catalyst. These materials were characterized using different physico-chemical techniques such as BET, XRD, SEM–EDS, TPR, CO pulse chemisorption, and TPO reactions. The performance of the Rh/Al2O3 catalyst was evaluated in catalytic ESR reaction at varying temperatures and space velocities. Our studies revealed that the Rh/Al2O3 catalyst is capable of breaking the C–C bond with a complete elimination of C2 compounds, particularly ethylene in the exit product stream with high H2 yield under the reaction conditions applied. Furthermore, the nature of intermediate species and products formed during catalytic ESR conditions was identified using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which revealed that both the acetate driven and formate driven mechanism of ESR prevail over the surface of the prepared catalyst. In view of the absence of ethylene in the product stream as well as in the DRIFT study, it was concluded that due to the inherent lower acidity of the alumina support, ethanol molecules prefer the dehydrogenation route over dehydration. DRIFT studies also brought out the significant role of Rh towards aiding ethanol decomposition. Based on these studies, a plausible mechanism for catalytic ESR reaction over Rh/Al2O3 has been proposed. Time-on-stream studies revealed the good stability of the catalyst over extended periods (~20 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schrope M (2001) Which way to energy utopia? Nature 414(6865):682–684

    Article  CAS  Google Scholar 

  2. Semelsberger TA, Ott KC, Borup RL, Greene HL (2006) Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid–acid catalysts. Appl Catal B 65(3–4):291–300. doi:10.1016/j.apcatb.2006.02.015

    Article  CAS  Google Scholar 

  3. Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107(10):3952–3991. doi:10.1021/cr0501994

    Article  CAS  Google Scholar 

  4. Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev 13(6–7):1301–1313. doi:10.1016/j.rser.2008.09.027

    Article  CAS  Google Scholar 

  5. Frusteri F, Freni S (2007) Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell. J Power Sources 173(1):200–209. doi:10.1016/j.jpowsour.2007.04.065

    Article  CAS  Google Scholar 

  6. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247. doi:10.1016/j.ijhydene.2007.04.038

    Article  CAS  Google Scholar 

  7. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117(1):39–49. doi:10.1016/j.cej.2005.12.008

    Article  CAS  Google Scholar 

  8. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123. doi:10.1021/cr2000114

    Article  CAS  Google Scholar 

  9. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5):2098–2106. doi:10.1021/ef0500538

    Article  CAS  Google Scholar 

  10. Bshish A, Yaakob Z, Narayanan B, Ramakrishnan R, Ebshish A (2011) Steam-reforming of ethanol for hydrogen production. Chem Pap 65(3):251–266. doi:10.2478/s11696-010-0100-0

    Article  CAS  Google Scholar 

  11. Zhang C, Yue H, Huang Z, Li S, Wu G, Ma X, Gong J (2013) Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustain Chem Eng 1(1):161–173. doi:10.1021/sc300081q

    CAS  Google Scholar 

  12. Barroso M, Gomez M, Arrúa L, Abello M (2015) Effect of the water–ethanol molar ratio in the ethanol steam reforming reaction over a Co/CeO2/MgAl2O4 catalyst. Reac Kinet Mech Catal. doi:10.1007/s11144-015-0852-1

    Google Scholar 

  13. Lakhapatri SL, Abraham MA (2009) Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Appl Catal A 364(1–2):113–121. doi:10.1016/j.apcata.2009.05.035

    Article  CAS  Google Scholar 

  14. Sheng PY, Yee A, Bowmaker GA, Idriss H (2002) H2 production from ethanol over Rh–Pt/CeO2 catalysts: the role of Rh for the efficient dissociation of the carbon-carbon bond. J Catal 208(2):393–403. doi:10.1006/jcat.2002.3576

    Article  CAS  Google Scholar 

  15. Diagne C, Idriss H, Kiennemann A (2002) Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catal Commun 3(12):565–571. doi:10.1016/S1566-7367(02)00226-1

    Article  CAS  Google Scholar 

  16. Sanchez-Sanchez MC, Yerga RMN, Kondarides DI, Verykios XE, Fierro JLG (2010) Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3. J Phys Chem A 114(11):3873–3882

    Article  Google Scholar 

  17. Sheng PY, Bowmaker GA, Idriss H (2004) The reactions of ethanol over Au/CeO2. Appl Catal A 261(2):171–181. doi:10.1016/j.apcata.2003.10.046

    Article  CAS  Google Scholar 

  18. Raskó J, Hancz A, Erdőhelyi A (2004) Surface species and gas phase products in steam reforming of ethanol on TiO2 and Rh/TiO2. Appl Catal A 269(1–2):13–25. doi:10.1016/j.apcata.2004.03.053

    Article  Google Scholar 

  19. Schmal M, Cesar DV, Souza MMVM, Guarido CE (2011) Drifts and TPD analyses of ethanol on Pt catalysts over Al2O3 and ZrO2—partial oxidation of ethanol. Can J Chem Eng 89(5):1166–1175. doi:10.1002/cjce.20597

    Article  CAS  Google Scholar 

  20. Erdőhelyi A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today 116(3):367–376. doi:10.1016/j.cattod.2006.05.073

    Article  Google Scholar 

  21. Yee A, Morrison SJ, Idriss H (1999) A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J Catal 186(2):279–295. doi:10.1006/jcat.1999.2563

    Article  CAS  Google Scholar 

  22. Yee A, Morrison SJ, Idriss H (2000) A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: evidence of benzene formation. J Catal 191(1):30–45. doi:10.1006/jcat.1999.2765

    Article  CAS  Google Scholar 

  23. Yee A, Morrison SJ, Idriss H (2000) The reactions of ethanol over M/CeO2 catalysts: evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63(2–4):327–335. doi:10.1016/S0920-5861(00)00476-4

    Article  CAS  Google Scholar 

  24. da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl Catal B 102(1–2):94–109. doi:10.1016/j.apcatb.2010.11.030

    Article  Google Scholar 

  25. de Lima SM, Silva AM, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: reaction mechanism and deactivation. Appl Catal A 352(1–2):95–113. doi:10.1016/j.apcata.2008.09.040

    Article  Google Scholar 

  26. de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl Catal A 377(1–2):181–190. doi:10.1016/j.apcata.2010.01.036

    Article  Google Scholar 

  27. Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403. doi:10.1002/ejic.200500348

    Article  Google Scholar 

  28. Devianto H, Li ZL, Yoon SP, Han J, Nam SW, Lim T-H, Lee H-I (2010) The effect of Al addition on the prevention of Ni sintering in bio-ethanol steam reforming for molten carbonate fuel cells. Int J Hydrog Energy 35(7):2591–2596. doi:10.1016/j.ijhydene.2009.04.001

    Article  CAS  Google Scholar 

  29. Llorca J, Piscina PRdl, Sales J, Homs N (2001) Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts. Chem Commun 7:641–642. doi:10.1039/b100334h

    Article  Google Scholar 

  30. Morterra C, Zecchina A, Coluccia S, Chiorino A (1977) I.r. spectroscopic study of CO2 adsorption onto [small eta]-Al2O3. J Chem Soc Faraday Trans 1 73:1544–1560. doi:10.1039/f19777301544

    Article  CAS  Google Scholar 

  31. Can F, Le Valant A, Bion N, Epron F, Duprez D (2008) New active and selective Rh–REOx–Al2O3 catalysts for ethanol steam reforming. J Phys Chem C 112(36):14145–14153. doi:10.1021/jp801954s

    Article  CAS  Google Scholar 

  32. Freni S (2001) Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells. J Power Sources 94(1):14–19. doi:10.1016/S0378-7753(00)00593-0

    Article  CAS  Google Scholar 

  33. Cavallaro S, Chiodo V, Freni S, Mondello N, Frusteri F (2003) Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Appl Catal A 249(1):119–128. doi:10.1016/S0926-860X(03)00189-3

    Article  CAS  Google Scholar 

  34. Breen JP, Burch R, Coleman HM (2002) Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl Catal B 39(1):65–74. doi:10.1016/S0926-3373(02)00075-9

    Article  CAS  Google Scholar 

  35. Idriss H (2004) Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platin Met Rev 48(3):11

    Article  Google Scholar 

  36. Wang J-H, Lee CS, Lin MC (2009) Mechanism of ethanol reforming: theoretical foundations. J Phys Chem C 113(16):6681–6688. doi:10.1021/jp810307h

    Article  CAS  Google Scholar 

  37. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330. doi: http://www.nature.com/nmat/journal/v8/n4/suppinfo/nmat2359_S1.html

  38. Hung C-C, Chen S-L, Liao Y-K, Chen C-H, Wang J-H (2012) Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. Int J Hydrog Energy 37(6):4955–4966. doi:10.1016/j.ijhydene.2011.12.060

    Article  CAS  Google Scholar 

  39. Auprêtre F, Descorme C, Duprez D (2002) Bio-ethanol catalytic steam reforming over supported metal catalysts. Catal Commun 3(6):263–267. doi:10.1016/S1566-7367(02)00118-8

    Article  Google Scholar 

  40. Aupretre F, Descorme C, Duprez D, Casanave D, Uzio D (2005) Ethanol steam reforming over MgxNi1−xAl2O3 spinel oxide-supported Rh catalysts. J Catal 233(2):464–477. doi:10.1016/j.jcat.2005.05.007

    Article  CAS  Google Scholar 

  41. Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück HP, Kiss J (2014) Effects of support and Rh additive on co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4(4):1205–1218. doi:10.1021/cs500045z

    Article  CAS  Google Scholar 

  42. Varga E, Ferencz Z, Oszkó A, Erdőhelyi A, Kiss J (2015) Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: an XPS study. J Mol Catal A 397:127–133. doi:10.1016/j.molcata.2014.11.010

    Article  CAS  Google Scholar 

  43. Sharma PK, Saxena N, Bhatt A, Rajagopal C, Roy PK (2013) Synthesis of mesoporous bimetallic Ni-Cu catalysts supported over ZrO2 by a homogenous urea coprecipitation method for catalytic steam reforming of ethanol. Catal Sci Technol 3(4):1017–1026. doi:10.1039/c2cy20563g

    Article  CAS  Google Scholar 

  44. Taspinar E, Tas AC (1997) Low-temperature chemical synthesis of lanthanum monoaluminate. J Am Ceram Soc 80(1):133–141. doi:10.1111/j.1151-2916.1997.tb02801.x

    Article  CAS  Google Scholar 

  45. Marcelino JEM, Granados-Correa F, Pfeiffer H, Bulbulian S (2012) Synthesis of MgO, ZnO and Al2O3 by solid and solution combustion processes and study of their performances in Co2+ uptake. Ceramics-Silikáty 56(3):254–260

    Google Scholar 

  46. Geyer R, Hunold J, Keck M, Kraak P, Pachulski A, Schödel R (2012) Methods for determining the metal crystallite size of Ni supported catalysts. Chem Ing Tech 84(1–2):160–164. doi:10.1002/cite.201100101

    Article  CAS  Google Scholar 

  47. Souza MCP, Lenzi GG, Colpini LMS, Jorge LMM, Santos OAA (2011) Photocatalytic discoloration of reactive blue 5 g dye in the presence of mixed oxides and with the addition of iron and silver. Braz J Chem Eng 28:393–402

    Article  CAS  Google Scholar 

  48. Vis JC, van ‘t Blik HFJ, Huizinga T, van Grondelle J, Prins R (1985) The morphology of rhodium supported on TiO2 and Al2O3 as studied by temperature-programmed reduction-oxidation and transmission electron microscopy. J Catal 95(2):333–345. doi:10.1016/0021-9517(85)90111-3

    Article  CAS  Google Scholar 

  49. Hwang C-P, Yeh C-T, Zhu Q (1999) Rhodium-oxide species formed on progressive oxidation of rhodium clusters dispersed on alumina. Catal Today 51(1):93–101. doi:10.1016/S0920-5861(99)00011-5

    Article  CAS  Google Scholar 

  50. Basile F, Fornasari G, Gazzano M, Kiennemann A, Vaccari A (2003) Preparation and characterisation of a stable Rh catalyst for the partial oxidation of methane. J Catal 217(2):245–252. doi:10.1016/S0021-9517(03)00021-6

    Article  CAS  Google Scholar 

  51. Patel M, Jindal TK, Pant KK (2013) Kinetic study of steam reforming of ethanol on Ni-based Ceria-Zirconia catalyst. Ind Eng Chem Res 52(45):15763–15771. doi:10.1021/ie401570s

    Article  CAS  Google Scholar 

  52. Fajardo HV, Probst LFD (2006) Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts. Appl Catal A 306:134–141. doi:10.1016/j.apcata.2006.03.043

    Article  CAS  Google Scholar 

  53. Hussein GAM, Sheppard N, Zaki MI, Fahim RB (1991) Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 3. Ethanol over TiO2, ZrO2 and HfO2, and general conclusions from parts 1 to 3. J Chem Soc Faraday Trans 87(16):2661–2668. doi:10.1039/ft9918702661

    Article  CAS  Google Scholar 

  54. Binet C, Daturi M, Lavalley J-C (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50(2):207–225. doi:10.1016/S0920-5861(98)00504-5

    Article  CAS  Google Scholar 

  55. Mattos LV, Noronha FB (2005) Partial oxidation of ethanol on supported Pt catalysts. J Power Sources 145(1):10–15. doi:10.1016/j.jpowsour.2004.12.034

    Article  CAS  Google Scholar 

  56. Mattos LV, Noronha FB (2005) The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol. J Power Sources 152:50–59. doi:10.1016/j.jpowsour.2004.12.052

    Article  CAS  Google Scholar 

  57. Knoezinger H, Stuebner B (1978) Adsorption of alcohols on alumina. 1. Gravimetric and infrared spectroscopic investigation. J Phys Chem 82(13):1526–1532. doi:10.1021/j100502a013

    Article  CAS  Google Scholar 

  58. Benítez JJ, Carrizosa I, Odriozola JA (1995) In situ diffuse reflectance infrared (DRIFTS) identification of active sites in the CO + H2 reaction over lanthanide-modified Rh/Al2O3 catalysts. Appl Surf Sci 84(4):391–399. doi:10.1016/0169-4332(94)00568-0

    Article  Google Scholar 

  59. Greenler RG (1962) Infrared study of the adsorption of methanol and ethanol on aluminum oxide. J Chem Phys 37(9):2094–2100. doi:10.1063/1.1733430

    Article  CAS  Google Scholar 

  60. Kagel RO (1967) Infrared investigation of the adsorption and surface reactions of the C1 through C4 normal alcohols on γ -alumina. J Phys Chem 71(4):844–850. doi:10.1021/j100863a010

    Article  CAS  Google Scholar 

  61. Sanchez-Sanchez MC, Navarro Yerga RM, Kondarides DI, Verykios XE, Fierro JLG (2010) Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on γ-Al2O3. J Phys Chem A 114(11):3873–3882. doi:10.1021/jp906531x

    Article  Google Scholar 

  62. Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17(1):31–70. doi:10.1080/03602457808080878

    Article  Google Scholar 

  63. Harrison B, Diwell AF, Hallett C (1988) Promoting platinum metals by ceria metal -support interactions in autocatalysts. Platin Met Rev 32(2):73–83

    CAS  Google Scholar 

  64. Chen L, Choong CKS, Zhong Z, Huang L, Ang TP, Hong L, Lin J (2010) Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst. J Catal 276(2):197–200. doi:10.1016/j.jcat.2010.08.018

    Article  CAS  Google Scholar 

  65. Laosiripojana N, Assabumrungrat S (2006) Catalytic steam reforming of ethanol over high surface area CeO2: the role of CeO2 as an internal pre-reforming catalyst. Appl Catal B 66(1–2):29–39. doi:10.1016/j.apcatb.2006.01.011

    Article  CAS  Google Scholar 

  66. Duprez D, Hadj-Aissa M, Barbier J (1989) Effect of steam on the coking of platinum catalysts: I. Inhibiting effect of steam at low partial pressure for the dehydrogenation of cyclopentane and the coking reaction. Appl Catal 49(1):67–74. doi:10.1016/S0166-9834(00)81422-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Director, CFEES for providing the laboratory facilities. The authors are also thankful to SSPL, Delhi for carrying out XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.K., Saxena, N., Roy, P.K. et al. Hydrogen generation from ethanol by steam reforming using a Rh catalyst supported over low acidic Al2O3 . Reac Kinet Mech Cat 117, 655–674 (2016). https://doi.org/10.1007/s11144-015-0959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0959-4

Keywords

Navigation