Skip to main content
Log in

Historical overview of the oscillating reactions. Contribution of Professor Slobodan Anić

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This review summarizes the highlights of the history of oscillating reactions since the discovery of Bray in 1917 through the discovery of Belousov, the exponential growth of the number of works in the field that followed it and chemical chaos. It focuses on the work of Professor Slobodan Anić and the Belgrade group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anić S, Mitić D, Kolar-Anić LJ (1985) The Bray–Liebhafsky reaction. I. Controlled development of oscillations. J Serb Chem Soc 50:53

    Google Scholar 

  2. Anić S, Mitić D, Veselinović D, Kolar-Anić LJ (1985) The Bray–Liebhafsky reaction. II. Potentiometric and pH-metric tracing. J Serb Chem Soc 50:529

    Google Scholar 

  3. Anić S, Lj Kolar-Anić (1986) Some new details in the kinetic considerations of the oscillatory decomposition of hydrogen peroxide. Ber Bunsenges Phys Chem 90:539

    Article  Google Scholar 

  4. Anić S, Lj Kolar-Anić (1986) The oscillatory decomposition of hydrogen peroxide monitored by the potentiometric method with platinum and silver(+)/sulfur(2−) indicator electrode. Ber Bunsenges Phys Chem 90:1084

    Article  Google Scholar 

  5. Anić S, Lj Kolar-Anić (1987) The influence of potassium iodate on hydrogen peroxide decomposition in Bray–Liebhafsky reaction. Ber Bunsenges Phys Chem 91:1010

    Article  Google Scholar 

  6. Anić S, Mitić D, Curćija M (1987) The Bray–Liebhafsky reaction. III. Oscillatory decomposition of hydrogen peroxide in the presence of comparatively high acidity. J Serb Chem Soc 52:575

    Google Scholar 

  7. Bray WC (1921) A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc 43:1262

    Article  CAS  Google Scholar 

  8. Liebhafsky HA (1931) Reactions involving hydrogen peroxide, iodine and iodate ion. IV. The oxidation of iodine to iodate ion by hydrogen peroxide. J Am Chem Soc 53:2074

    Article  CAS  Google Scholar 

  9. Liebhafsky HA, Wu LS (1974) Reactions involving hydrogen peroxide, iodine, and iodate ion. V. Introduction to the oscillatory decomposition of hydrogen peroxide. J Am Chem Soc 96:7180

    Article  CAS  Google Scholar 

  10. Belousov B P (1958) Periodically acting reaction and its mechanism. Sb Ref Radiatsion Med 145 (in Russian)

  11. Zhabotinsky AM (1964) Periodic process of the oxidation of malonic acid in solution (study of kinetics of Belousov’s reaction). Biofizika 9:306 (in Russian)

    Google Scholar 

  12. Belousov BP (1985) A periodic reaction and its mechanism. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical system. Wiley, New York, p 605

    Google Scholar 

  13. Zaikin A, Zhabotinsky AM (1970) Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225:535

    Article  CAS  Google Scholar 

  14. Zhabotinsky AM (1991) A history of chemical oscillations and waves. Chaos 1:379

    Article  Google Scholar 

  15. Epstein IR, Pojman J (1998) Introduction to nonlinear chemical dynamics. Oscillations, waves, patterns and Chaos. Oxford University Press, New York

    Google Scholar 

  16. Körös E, Orban M (1978) Uncatalyzed oscillatory chemical reactions. Nature 273:371

    Article  Google Scholar 

  17. Briggs TS, Rauscher WC (1973) An oscillating iodine clock. J Chem Edu 50:496

    Article  CAS  Google Scholar 

  18. Furrow SD (1985) Chemical oscillators based on iodate ion and hydrogen peroxide. In: Field RJ, Burger M (eds) Oscillations and traveling waves in chemical system. Wiley, New York, p 171

    Google Scholar 

  19. Furrow SD, Cervellati R, Amadori G (2002) New substrates for the oscillating briggs-rauscher reaction. J Phys Chem A 106:5841

    Article  CAS  Google Scholar 

  20. Furrow SD, Aurentz DJ (2010) Reactions of iodomalonic acid, diiodomalonic acid and other organics in the briggs–rauscher oscillating system. J Phys Chem 114:2526

    Article  CAS  Google Scholar 

  21. Furrow SD, Cervellati R, Greco E (2012) A study of the cerium-catalyzed briggs–rauscher oscillating reaction. Z Naturforsch B 67:89

    Article  CAS  Google Scholar 

  22. Schmitz G, Furrow SD (2015) Bray–Liebhafsky and non-catalysed briggs–rauscher oscillating reactions. Russ J Phys Chem A 89:114

    Article  Google Scholar 

  23. Field RJ, Körös E, Noyes RM (1972) Oscillations in chemical systems, 2. Thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system. J Am Chem Soc 94:8649

    Article  CAS  Google Scholar 

  24. Sharma KR, Noyes RM (1976) Oscillations in chemical systems, 13. A detailed molecular mechanism for the Bray–Liebhafsky reaction of iodate and hydrogen peroxide. J Am Chem Soc 98:4345

    Article  CAS  Google Scholar 

  25. Schmitz G (1974) Oscillations entretenues dans un système chimique homogène. J Chim Phys 71:689

    CAS  Google Scholar 

  26. Schmitz G (1987) Cinétique de la réaction de Bray. J Chim Phys 84:957

    CAS  Google Scholar 

  27. Matsuzaki I, Nakajima T, Liebhafsky HA (1975) Mechanism of the oscillatory decomposition of hydrogen peroxide in the presence of iodate ion and iodine. Faraday Symp Chem Soc 9:55

    Article  CAS  Google Scholar 

  28. Liebhafsky HA, Furuichi R, Roe G (1981) Reactions involving hydrogen peroxide, iodine, and iodate ion. 7. The smooth catalytic decomposition of hydrogen peroxide, mainly at 50 °C. J Am Chem Soc 103:51

    Article  CAS  Google Scholar 

  29. Schmitz G (1999) Effects of oxygen on the Bray–Liebhafsky reaction. Phys Chem Chem Phys 1:4605

    Article  CAS  Google Scholar 

  30. L Kolar-Anić, Čupić Ž, Anić S, Schmitz G (1997) Pseudo-steady states in the model of the Bray–Liebhafsky oscillatory reaction. J Chem Soc Faraday Trans 93:2147

    Article  Google Scholar 

  31. L Kolar-Anić, Misljenović D, Stanisavljev D, Anić S (1990) Applicability of Schmitz’s model to dilution-reinitiated oscillations in the Bray–Liebhafsky reaction. J Phys Chem 94:8144

    Article  Google Scholar 

  32. Lj Kolar-Anić, Vukelić N, Dj Mišljenović, Anić S (1995) On the instability domains of some models for Bray–Liebhafsky oscillatory reaction. J Serb Chem Soc 60:1005

    Google Scholar 

  33. Anić S, Stanisavljev D, Čupić Ž, Radenković M, Vukojević V, Lj Kolar-Anić (1998) The selforganization phenomena during catalytic decomposition of hydrogen peroxide. Sci Sinter 30:49

    Google Scholar 

  34. Schmitz G, L Kolar-Anić, Anić S, Čupić Ž (2000) The illustration of multistability. J Chem Edu 77:1502

    Article  CAS  Google Scholar 

  35. Anić S, L Kolar-Anić (1988) Kinetic aspects of the Bray–Liebhafsky oscillatory reaction. J Chem Soc, Faraday Trans I 84:3413

    Article  Google Scholar 

  36. Anić S, Mitić D (1988) The Bray–Liebhafsky reaction.IV. New results in the studies of hydrogen peroxide oscillatory decomposition at high acidity. J Serb Chem Soc 53:371

    Google Scholar 

  37. Anić S, Stanisavljev D, Krnajski Belovljev G, LJ Kolar-Anić (1989) Examination of the temperature variations on the Bray–Liebhafsky oscillatory reaction. Ber Bunsenges Phys Chem 93:488

    Article  Google Scholar 

  38. Anić S, Lj Kolar-Anić, Stanisavljev D, Begović N, Mitić D (1991) Dilution reinitiated oscillations in the Bray–Liebhafsky system. Reac Kin Catal Lett 43:155

    Article  Google Scholar 

  39. Kragović M, Anić S (2008) Bray–Liebhafsky oscillatory reaction generated in batch reactor. Influence of pulse involving iodide at the end of preoscillatory period. In: Antic-Jovanović A (ed) Physical chemistry, vol I. Society of Physical Chemists of Serbia, Belgrade, p. 238

  40. Anić S, Stanisavljev D (1996) Bray–Liebhafsky oscillatory reaction new kinetic data on low-acidity reaction systems. J Serb Chem Soc 61:125

    Google Scholar 

  41. Anić S, Kolar-Anić LJ (1996) The Bray–Liebhafsky reaction kinetics in iodide oscillations. J Serb Chem Soc 61:885

    Google Scholar 

  42. Anić S (1997) Relation between the number of oscillations and the activation energy of an oscillatory process. J Serb Chem Soc 62:65

    Google Scholar 

  43. Anić S, Lj Kolar-Anić, Körös E (1997) Methods to determine activation energies for the two kinetic states of the oscillatory Bray–Liebhafsky reaction. React Kinet Catal Lett 61:111

    Article  Google Scholar 

  44. Vukojević V, Pejić N, Stanisavljev D, Anić S, Lj Kolar-Anić (1999) Determination of Cl, Br, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray–Liebhafsky reaction. Anal (Camb) 124:147

    Article  Google Scholar 

  45. Cirić J, Anić S, Čupić Ž, Kolar-Anić LJ (2000) The Bray–Liebhafsky oscillatory reaction. kinetic investigations in reduction and oxidation pathways based on hydrogen peroxide concentration monitoring. Sci Sinter 32:187

    Google Scholar 

  46. Radenković M, Schmitz G, Kolar-Anić LJ, Anić S (1996) Dependence of the rate of iodine oxidation by hydrogen peroxide on the acidity of the Bray–Liebhafsky system. In: Ribnikar S, Anić S (eds) Physical chemistry ‘96. Society of Physical Chemists of Serbia, Belgrade, p 137

    Google Scholar 

  47. Radenković M, Schmitz G, Lj Kolar-Anić (1997) Simulation of iodine oxidation by hydrogen peroxide in acid media, on the basis of the model of Bray–Liebhafsky reaction. J Serb Chem Soc 62:367

    Google Scholar 

  48. Schmitz G (2010) Iodine oxidation by hydrogen peroxide in acidic solutions, Bray–Liebhafsky reaction and other related reactions. Phys Chem Chem Phys 12:6605

    Article  CAS  Google Scholar 

  49. Schmitz G (2011) Iodine oxidation by hydrogen peroxide and Bray–Liebhafsky oscillating reaction: effect of the temperature. Phys Chem Chem Phys 13:7102

    Article  CAS  Google Scholar 

  50. Szabo E, Ševčik P (2013) Reexamination of gas production in the Bray–Liebhafsky reaction: what happened to O2 pulses? J Phys Chem A 117:10604

    Article  CAS  Google Scholar 

  51. Blagojević S, Pejić N, Anić S, Kolar-Anić LJ (2000) Belousov–Zhabotinsky oscillatory reaction. Kinetics of malonic acid decomposition. J Serb Chem Soc 65:709

    Google Scholar 

  52. Lj Kolar-Anić, Blagojević S, Pejić N, Begović N, Blagojević St N, Anić S (2006) New evidence of transient complex oscillations in a closed, well-stirred Belousov–Zhabotinsky system. J Serb Chem Soc 71:605

    Article  Google Scholar 

  53. Blagojević SM, Anić S, Čupić Ž, Pejić N, LJ Kolar-Anić (2008) Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov–Zhabotinsky reaction under batch conditions. Phys Chem Chem Phys 10:6658

    Article  Google Scholar 

  54. Blagojević SM, Anić S, Čupić Ž, Pejić N, Lj Kolar-Anić (2009) Temperature influence on the malonic acid decomposition in the Belousov–Zhabotinsky reaction. Russ J Phys Chem A 83:1496

    Article  Google Scholar 

  55. Blagojević SM, Anić S, Čupić Ž (2011) Influence of most important radicals on the numerically simulated Belousov–Zhabotinsky oscillatory reaction under batch conditions. Russ J Phys Chem A 85:2274

    Article  Google Scholar 

  56. Blagojević SM, Anić S, Čupić Ž, Blagojević SN, Lj Kolar-Anić (2013) Numerical evidence of complex nonlinear phenomena of the Belousov–Zhabotinsky oscillatory reaction under batch conditions. Russ J Phys Chem A 87:2140

    Article  Google Scholar 

  57. Gleick J (2008) Chaos: making a new science. Penguin Books, New York

    Google Scholar 

  58. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130

    Article  Google Scholar 

  59. Gyorgyi L, Field RJ (1992) A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature 355:808

    Article  CAS  Google Scholar 

  60. Petrov V, Gáspár V, Masere J, Showalter K (1993) Controlling chaos in the Belousov–Zhabotinsky reaction. Nature 361:240

    Article  CAS  Google Scholar 

  61. Vukojević V, Anić S, Kolar-Anić LJ (2000) Investigation of dynamic behavior of the Bray–Liebhafsky reaction in the CSTR. Determination of bifurcation points. J Phys Chem A 104:10731

    Article  Google Scholar 

  62. Vukojević V, Anić S, Kolar-Anić LJ (2002) Investigation of dynamic behavior of the Bray–Liebhafsky reaction in the CSTR properties of the system examined by pulsed perturbations with I. Phys Chem Chem Phys 4:1276

    Article  Google Scholar 

  63. Kolar-Anić LJ, Vukojević V, Pejić N, Grozdić T, Anić S (2004) Deterministic chaos in open well-stirred Bray–Liebhafsky reaction system. In: Boccaletti S et al (ed) AIP Conf, (experimental chaos), vol. 742. American Institute of Physics, New York, p 3

  64. Pejić N, Maksimović J, Ribić D, Lj Kolar-Anić (2009) Dynamic states of the Bray–Liebhafsky reaction when sulphuric acid is the control parameter. Russ J Phys Chem A 83:1490

    Article  Google Scholar 

  65. Pejić N, Vukojević V, Maksimović J, Ivanović AZ, Anić S, Čupić Ž, Lj Kolar-Anić (2011) Dynamic behavior of the Bray–Liebhafsky oscillatory reaction controlled by sulfuric acid and temperature. Russ J Phys Chem A 85:2310

    Article  Google Scholar 

  66. Nuša-Bubanja I, Anić S, Kolar-Anić LJ (2014) Intermittent oscillation in Bray–Liebhafsky reaction system. In: Čupić Ž, Anić S (eds) Physical chemistry, vol I. Society of Physical Chemists of Serbia, Belgrade, p 336

    Google Scholar 

  67. Kolar-Anić LJ, Grozdić T, Vukojević V, Schmitz G, Anić S (2004) Simulations of complex oscillations based on a model of the Bray–Liebhafsky reaction. In: Anić S, Čupić Ž, Kolar-Anić LJ (eds) Selforganization in nonequilibrium systems. Society of Physical Chemists of Serbia, Belgrade, p 115

    Google Scholar 

  68. Schmitz G, Lj Kolar-Anić, Anić S, Grozdić T, Vukojević V (2006) Complex and chaotic oscillations in a model for the catalytic hydrogen peroxide decomposition under open reactor conditions. J Phys Chem A 110:10361

    Article  CAS  Google Scholar 

  69. Schmitz G, Kolar-Anić LJ, Anić S, Čupić Ž (2008) Stoichiometric network analysis and associated dimensionless kinetic equations application to a model of the Bray–Liebhafsky reaction. J Chem Phys A 112:13452

    Article  CAS  Google Scholar 

  70. Ivanović AZ, Čupić Ž, Janković M, Lj Kolar-Anić, Anić S (2008) The chaotic sequences in the Bray–Liebhafsky reaction in an open reactor. Phys Chem Chem Phys 10:5848

    Article  Google Scholar 

  71. Ivanović AZ, Čupić Ž, LJ Kolar-Anić, Janković M, Anić S (2009) Large deviation spectra of chaotic time series from Bray–Liebhafsky reaction. Russ J Phys Chem A 83:1526

    Article  Google Scholar 

  72. Ivanović AZ, Čupić Ž, Marinović SR, Schmitz G, Kolar-Anić LJ (2010) Critical manifold of the model for Bray–Liebhafsky oscillatory reaction. In: Anić S, Čupić Ž (eds) Physical chemistry, vol I. Society of Physical Chemists of Serbia, Belgrade, p 236

    Google Scholar 

  73. Ivanović AZ, Marković V, Anić S, Lj Kolar-Anić, Čupić Ž (2011) Structures of chaos in open reaction systems. Phys Chem Chem Phys 13:20162

    Article  Google Scholar 

  74. Čupić Ž, Ivanović-Šašić A, Anić S, Stanković B, Maksimović J, Lj Kolar-Anić, Schmitz G (2013) Tourbillion in the phase space of the Bray–Liebhafsky nonlinear oscillatory reaction and related multiple-time- scale model. MATCH Commun Math Comput Chem 69:805

    Google Scholar 

  75. Čupić Ž, Blagojević SN, Blagojević S M, Anić S, Ivanović-Šašić A (2014) Ghost of the lost fixed point in a model of the Bray–Liebhafsky reaction. In Čupić Ž, Anić S (ed) Physical chemistry, vol I. Society of Physical Chemists of Serbia, Belgrade, p. 236, 360

  76. Čupić Ž, Lj Kolar-Anić, Anić S, Macešić S, Maksimović J, Pavlović M, Milenković M, Bubanja I, Greco E, Furrow SD, Cervellati R (2014) Regularity of intermittent bursts in briggs–rauscher oscillating systems with phenol. Helv Chim Acta 97:321

    Article  Google Scholar 

  77. Showalter K, Epstein IR (2015) From chemical systems to systems chemistry: patterns in space and time. CHAOS 25:097613

    Article  Google Scholar 

  78. Clarke B (1980) Stability of complex reaction networks. In: Prigogine I, Rice S (eds) Advances in chemical physics. Wiley, New York, pp 1–215

    Chapter  Google Scholar 

  79. Clarke B (1988) Stoichiometric network analysis. Cell Biophys 12:237

    Article  CAS  Google Scholar 

  80. Clarke B, Jiang W (1993) Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov–Zhabotinskii system. J Chem Phys 99:4464

    Article  CAS  Google Scholar 

  81. Schmitz G (1991) Etude du Braylator par la méthode de Clarke. J Chim Phys 88:15

    Google Scholar 

  82. Lj Kolar-Anić, Čupic Ž, Schmitz G, Anić S (2010) Improvement of the stoichiometric network analysis for determination of instability conditions of complex nonlinear reaction systems. Chem Eng Sci 65:3718

    Article  Google Scholar 

  83. Maćešić S, Čupić Ž, Anić S, Lj Kolar-Anić (2015) Autocatalator as the source of instability in the complex non-linear neuroendocrine model. Int J Nonlinear Mech 73:25

    Article  Google Scholar 

  84. Maćešić S, Čupić Ž, Blagojević S, Pejić N, Anić S, Lj Kolar-Anić (2015) Current rates and reaction rates in the stoichiometric network analysis (SNA). Open Chem 13:591

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Schmitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, G. Historical overview of the oscillating reactions. Contribution of Professor Slobodan Anić. Reac Kinet Mech Cat 118, 5–13 (2016). https://doi.org/10.1007/s11144-015-0968-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0968-3

Keywords

Navigation