Skip to main content
Log in

Catalytic investigation of PdCl2(TDA)2 immobilized on hydrophobic graphite oxide in the hydrogenation of 1-pentyne and the Heck coupling reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A Pd(II) complex with chloride and tridecylamine ligands (PdCl2(TDA)2) was immobilized on graphite oxide modified with the cationic surfactant octadecyltrimethylammonium bromide (C18TABr). Samples with different Pd loadings were synthesized and tested for the liquid-phase hydrogenation of 1-pentyne and the Heck coupling reactions of styrene–bromobenzene and styrene–iodobenzene. For the hydrogenation of 1-pentyne, the catalytic performance was found to be affected by the pretreatment procedure. For the Heck coupling reactions, the PdCl2(TDA)2/GO samples proved to be highly efficient catalysts. The catalytic activity was found to depend on the Pd loading for both reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  2. Dékány I, Krüger-Grasser R, Weiss A (1998) Colloid Polym Sci 276:570–576

    Article  Google Scholar 

  3. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740–2749

    Article  Google Scholar 

  4. Hontoria-Lucas C, López-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Carbon 33:1585–1592

    Article  CAS  Google Scholar 

  5. Clause A, Plass R, Boehm HP, Hofmann U (1957) Z Anorg Allg Chem 291:205–220

    Article  Google Scholar 

  6. He H, Riedl T, Lerf A, Klinowski J (1996) J Phys Chem 100:19954–19958

    Article  CAS  Google Scholar 

  7. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  8. Beckett RJ, Croft RC (1952) J Phys Chem 56:929–934

    Article  CAS  Google Scholar 

  9. Kotov NA, Dékány I, Fendler JH (1996) J Phys Chem 99:13065–13069

    Article  Google Scholar 

  10. Szabó T, Szeri A, Dékány I (2005) Carbon 43:87–94

    Article  Google Scholar 

  11. Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y (2007) Carbon 45:1005–1012

    Article  CAS  Google Scholar 

  12. Matsuo Y, Niwa T, Sugie Y (1999) Carbon 37:897–901

    Article  CAS  Google Scholar 

  13. Matsuo Y, Fukutsuka T, Sugie Y (2003) Chem Lett 32:1004–1005

    Article  CAS  Google Scholar 

  14. L’Argentiere PC, Quiroga ME, Liprandi DA, Cagnola EA, Roman-Martinez MC, Diaz-Aunon JA, de Lecea CSM (2003) Catal Lett 87:97–101

    Article  Google Scholar 

  15. Brodie B (1860) Ann Chim Phys 59:466–472

    Google Scholar 

  16. Cagnola EA, Quiroga ME, Liprandi DA, L’Argentiere P (2004) Appl Catal A Gen 274:205–212

    Article  CAS  Google Scholar 

  17. Mastalir Á, Király Z (2003) J Catal 220:372–381

    Article  CAS  Google Scholar 

  18. Heck RF (1982) Org React 27:345–390

    CAS  Google Scholar 

  19. Heck RF (1979) Acc Chem Res 12:146–151

    Article  CAS  Google Scholar 

  20. Molnár Á, Papp A (2006) Synlett 18:3130–3134

    Article  Google Scholar 

  21. Bedford RB (2003) Chem Commun 1787–1796

  22. Carturan G, Facchin G, Cocco G, Enzo S, Navazio G (1982) J Catal 76:405–417

    Article  CAS  Google Scholar 

  23. Mastalir Á, Király Z, Patzkó Á, Dékány I, L’Argentiere P (2008) Carbon 46:1631–1637

    Article  CAS  Google Scholar 

  24. Mastalir Á, Király Z, Benkő M, Dékány I (2008) Catal Lett 124:34–38

    Article  CAS  Google Scholar 

  25. Poshettivar V, Molnár Á (2007) Tetrahedron 63:6949–6976

    Article  Google Scholar 

  26. Papp A, Miklós K, Forgó P, Molnár Á (2005) J Mol Catal A Chem 229:107–116

    Article  CAS  Google Scholar 

  27. Demel J, Cejka J, Stepnicka P (2010) J Mol Catal A Chem 329:13–20

    Article  CAS  Google Scholar 

  28. Taladriz-Blanco P, Hervés P, Pérez-Juste J (2013) Top Catal 56:1154–1170

    Article  CAS  Google Scholar 

  29. Tamami B, Ghasemi S (2010) J Mol Catal A Chem 322:98–105

    Article  CAS  Google Scholar 

  30. Zhao F, Shirai M, Ikushima Y, Arai M (2002) J Mol Catal A Chem 180:211–219

    Article  CAS  Google Scholar 

  31. Molnár Á (2011) Curr Org Synth 8:172–186

    Article  Google Scholar 

  32. Martin-Aranda R, Cejka J (2010) Top Catal 53:141–153

    Article  CAS  Google Scholar 

  33. Phan NTS, Van der Sluys M, Jones CW (2006) Adv Synth Catal 348:609–679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the TÁMOP-4.2.2.A-11/1/KONV-2012-0047 project and the 103191 OTKA NN Grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Mastalir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastalir, Á., Quiroga, M., Szabó, T. et al. Catalytic investigation of PdCl2(TDA)2 immobilized on hydrophobic graphite oxide in the hydrogenation of 1-pentyne and the Heck coupling reaction. Reac Kinet Mech Cat 113, 61–68 (2014). https://doi.org/10.1007/s11144-014-0735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0735-x

Keywords

Navigation