Skip to main content

Advertisement

Log in

Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The preparation of high-performance supported Pd catalysts for the hydrogenation of aromatic nitro is of great importance. In this paper, covalent-triazine framework (CTF), an organic porous crystalline material connected by covalent bonds, was employed as the support for the preparation of Pd heterogeneous catalyst. The framework of CTF was maintained due to the utilization of cyclohexene as a moderate reductant for PdCl2. The catalysts were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The influence of reaction conditions (temperature, pressure, reaction time, concentration substrate and catalyst dosage) were investigated. At very mild reaction conditions (30 °C, 0.1 MPa H2, 2 mg Pd/CTF), the nitrobenzene was nearly stoichiometric hydrogenated to aniline. The Pd/CTF was effective for the conversion of a series of aromatic nitro compounds to the corresponding aromatic amines with good yield. The results showed that Pd/CTF has good catalytic activity and stability in the heterogeneous catalytic hydrogenation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goyal V, Sarki N, Singh B, Ray A, Poddar M, Bordoloi A, Narani A, Natte K (2020) ACS Appl Nano Mater 3:11070–11079

    CAS  Google Scholar 

  2. Song T, Ren P, Duan Y, Wang Z, Chen X, Yang Y (2018) Green Chem 20:4629–4637

    CAS  Google Scholar 

  3. Zou Z, Jiang Y, Song K (2019) Catal Lett 150:1277–1286

    Google Scholar 

  4. Subramanian T, Pitchumani K (2012) Catal Sci Technol 2:296–300

    CAS  Google Scholar 

  5. Bai Y, Zhu X, Zhang L, Xu N (2014) Chin J Catal (Chinese Version) 34:263–271

    Google Scholar 

  6. Bao L, Yu Z, Fei T, Yan Z, Li J, Sun C, Pang S (2020) Appl Organomet Chem 34:e5607

    CAS  Google Scholar 

  7. Yang Q, Yao F, Zhong Y, Chen F, Shu X, Sun J, He L, Wu B, Hou K, Wang D, Li X (2019) Part Part Syst Charact 36:1800557

    Google Scholar 

  8. Mohammadinezhad A, Akhlaghinia B (2020) Catal Lett 150:332–352

    CAS  Google Scholar 

  9. Lyu H, Diercks CS, Zhu C, Yaghi OM (2019) J Am Chem Soc 141:6848–6852

    PubMed  CAS  Google Scholar 

  10. Wei S, Zhang F, Zhang W, Qiang P, Yu K, Fu X, Wu D, Bi S, Zhang F (2019) J Am Chem Soc 141:14272–14279

    PubMed  CAS  Google Scholar 

  11. Mullangi D, Chakraborty D, Pradeep A, Koshti V, Vinod CP, Panja S, Nair S, Vaidhyanathan R (2018) Small 14:e1801233

    PubMed  Google Scholar 

  12. Chen R, Shi JL, Ma Y, Lin G, Lang X, Wang C (2019) Angew Chem Int Ed 58:6430–6434

    CAS  Google Scholar 

  13. Liu J, Wang N, Ma L (2020) Chemistry- Asian J 15:338–351

    CAS  Google Scholar 

  14. Yang J, Wu Y, Wu X, Liu W, Wang Y, Wang J (2019) Green Chem 21:5267–5273

    CAS  Google Scholar 

  15. Hou C, Zhao D, Chen W, Li H, Zhang S, Liang C (2020) Nanomaterials (Basel) 10:426

    CAS  Google Scholar 

  16. Fan M, Wang WD, Zhu Y, Sun X, Zhang F, Dong Z (2019) Appl Catal B 257:117942

    CAS  Google Scholar 

  17. Hao S, Li S, Jia Z (2020) J Nanopart Res 22:270

    CAS  Google Scholar 

  18. Wan X, Wang X, Chen G, Guo C, Zhang B (2020) Mater Chem Phys 246:122574

    Google Scholar 

  19. Chen L, Zhang L, Chen Z, Liu H, Luque R, Li Y (2016) Chem Sci 7:6015–6020

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang K, Hong K, Suh JM, Lee TH, Kwon O, Shokouhimehr M, Jang HW (2018) Res Chem Intermed 45:599–611

    Google Scholar 

  21. Krogul-Sobczak A, Cedrowski J, Kasperska P, Litwinienko G (2019) Catalysts 9:404

    Google Scholar 

  22. Ma Y, Lang Z, Du J, Yan L, Wang Y, Tan H, Khan SU, Liu Y, Kang Z, Li Y (2019) J Catal 377:174–182

    CAS  Google Scholar 

  23. Qiao C, Jia W, Zhong Q, Liu B, Zhang Y, Meng C, Tian F (2020) Catal Lett 150:3394–3401

    CAS  Google Scholar 

  24. Hu A, Lu X, Cai D, Pan H, Jing R, Xia Q, Zhou D, Xia Y (2019) Mol Catal 472:27–36

    CAS  Google Scholar 

  25. Datta KJ, Rathi AK, Kumar P, Kaslik J, Medrik I, Ranc V, Varma RS, Zboril R, Gawande MB (2017) Sci Rep 7:11585

    PubMed  PubMed Central  Google Scholar 

  26. Wang L, Guan E, Zhang J, Yang J, Zhu Y, Han Y, Yang M, Cen C, Fu G, Gates BC, Xiao FS (2018) Nat Commun 9:1362

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Sheng Y, Lin X, Wang X, Zou X, Zhang C (2020) Catalysts 10:374

    CAS  Google Scholar 

  28. Miao H, Hu S, Ma K, Sun L, Wu F, Wang H, Li H (2018) Catal Commun 109:33–37

    CAS  Google Scholar 

  29. Zhu L, Zheng T, Zheng J, Yu C, Zhou Q, Hua J, Zhang N, Shu Q, Chen BH (2017) Appl Surf Sci 423:836–844

    CAS  Google Scholar 

  30. Yang Y, Xie Y, Zhang J, Li D, Deng D, Duan Y (2019) ChemCatChem 11:5430–5434

    CAS  Google Scholar 

  31. Wang X, Huang C, Li X, Xie C, Yu S (2019) Chemistry- Asian J 14:2266–2272

    CAS  Google Scholar 

  32. Cheng M, Lv P, Zhang X, Xiong R, Guo Z, Wang Z, Zhou Z, Zhang M (2021) J Catal 399:182–191

    CAS  Google Scholar 

  33. Chen X, Zhou X-Y, Wu H, Lei Y-Z, Li J-H (2018) Synth Commun 48:2475–2484

    CAS  Google Scholar 

  34. Yang Y, Xie Y, Deng D, Li D, Zheng M, Duan Y (2019) ChemistrySelect 4:11165–11171

    CAS  Google Scholar 

  35. Yang Y, Yang D, Zhang C, Zheng M, Duan Y (2020) Molecules 25:2475

    PubMed Central  CAS  Google Scholar 

  36. Cyganowski P (2021) Colloids Surf A 612:125995

    CAS  Google Scholar 

  37. Lang L, Pan Z, Yan J (2019) J Alloys Compd 792:286–290

    CAS  Google Scholar 

  38. Liu Q, Xu Y, Qiu X, Huang C, Liu M (2019) J Catal 370:55–60

    CAS  Google Scholar 

  39. Torres CC, Jiménez VA, Campos CH, Alderete JB, Dinamarca R, Bustamente TM, Pawelec B (2018) Mol Catal 447:21–27

    CAS  Google Scholar 

  40. Hu Z, Tan S, Mi R, Li X, Li D, Yang B (2018) Catal Lett 148:1490–1498

    CAS  Google Scholar 

  41. Yao ZJ, Zhu JW, Lin N, Qiao XC, Deng W (2019) Dalton Trans 48:7158–7166

    PubMed  CAS  Google Scholar 

  42. Zhang D, Yang D, Wang S, Zeng L, Xin J, Zhang H, Lei A (2021) Chin J Chem 39:307–311

    CAS  Google Scholar 

  43. Wang L, Yang D, Alhumade H, Yi H, Qi X, Lei A (2021). Chin J Chem. https://doi.org/10.1002/cjoc.202100790

    Article  Google Scholar 

  44. Acharjya A, Pachfule P, Roeser J, Schmitt FJ, Thomas A (2019) Angew Chem Int Ed 58:14865–14870

    CAS  Google Scholar 

  45. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) J Am Chem Soc 133:19816–19822

    PubMed  CAS  Google Scholar 

  46. Duan Y, Zheng M, Li DM, Deng DS, Wu CC, Yang YL (2017) RSC Adv 7:3443–3449

    CAS  Google Scholar 

  47. Yin D, Zhang J, Li W, Fu Y (2020) Catal Lett 151:1902–1910

    Google Scholar 

  48. Babel V, Hiran BL (2020) Catal Lett 150:1865–1869

    CAS  Google Scholar 

  49. Tang Q, Yuan Z, Jin S, Yao K, Yang H, Chi Q, Liu B (2020) React Chem Eng 5:58–65

    CAS  Google Scholar 

  50. Fronczak M, Kasprzak A, Bystrzejewski M (2021) J Environ Chem Eng 9:104673

    CAS  Google Scholar 

  51. Patra AK, Vo NT, Kim D (2017) Appl Catal A 538:148–156

    CAS  Google Scholar 

  52. Li J, Zhang L, Liu X, Shang N, Gao S, Feng C, Wang C, Wang Z (2018) New J Chem 42:9684–9689

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (21802125 and 21902071) and the Henan Science and Technology Project (202102210007, 172102210490).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanliang Yang or Tianliang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1122 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Zhan, Y., Yang, Y. et al. Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro. Catal Lett 152, 3725–3732 (2022). https://doi.org/10.1007/s10562-022-03941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03941-4

Keywords

Navigation