Skip to main content
Log in

Bremsstrahlung at Low-Energy Electron–Nucleus Collisions in the Quantizing Magnetic Field. I. Distant Collisions

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analytically calculate the spectral power of bremsstrahlung from a slow electron colliding with motionless nuclei in a strong quantizing magnetic field, in which the energy of the Coulomb interaction between particles at a distance of the order of the Larmor radius exceeds the mechanical energy of the system in absolute value. In this case, the electron motion becomes quasibound in sufficiently close collisions. In this part of research, we consider bremsstrahlung at low frequencies, which is stipulated by distant flybys without quasibound motion: an electron can spread over many Landau levels as a result of the collision, but keeps the direction of its motion along the magnetic field. We prove that the transition from the classical to quantum cyclotron gyration of an electron does not manifest itself in the spectral emission power of the waves with arbitrary polarization at the considered frequencies. This property stems from the fact that the low-frequency emission is due to the longitudinal motion and electric drift in the crossed Coulomb and magnetic fields which remain quasiclassical. Thus, we confirm that the bleaching of the photosphere of a magnetic white dwarf, which was discovered in the classical consideration with respect to collisional absorption of the extraordinary wave (polarized across the external magnetic field), is also preserved in the quantum limit—for stars of this spectral type with the strongest magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ferrario, D. de Martino, and B.T.Gänsicke, Space Sci. Rev., 191, 111 (2015).

  2. M.Amoretti, C.Amsler, G. Bonomi, et al., Nature, 419, 456 (2002).

    Article  ADS  Google Scholar 

  3. G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett ., 89, No. 21, 213401 (2002).

    Article  ADS  Google Scholar 

  4. L. I. Menshikov and R. Landua, Phys. Usp., 46, No. 3, 227 (2003).

    Article  ADS  Google Scholar 

  5. S. A. Koryagin, Radiophys. Quantum Electron., 51, No. 6, 462 (2008).

    Article  ADS  Google Scholar 

  6. B. M. Askerov, Electron Transport Phenomena in Semiconductors, World Scietific, Singapore (1994).

    Book  Google Scholar 

  7. V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors, Elsevier Science Publishers, B.V. (1987).

  8. I. V. Dakhovsky, Fiz. Tverd. Tela [in Russian], 5, No. 8, 2332 (1963).

    Google Scholar 

  9. J. Ventura, Phys. Rev. C, 8, No. 6, 3021 (1973).

    Article  ADS  Google Scholar 

  10. G. G. Pavlov and D. G. Yakovlev, Sov. Phys. JETP, 43, No. 3, 389 (1976).

    ADS  Google Scholar 

  11. G. G. Pavlov and A. N. Panov, Sov. Phys. JETP, 44, No. 2, 300 (1976).

    ADS  Google Scholar 

  12. V. E. Golant, A. P. Zhilinsky, and I. E. Sakharov, Fundamentals of plasma physics Wiley, New York (1980).

  13. L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Butterworth–Heinemann (2012).

  14. V. F. Elesin, Phys. Usp., 48, No. 2, 183 (2005).

    Article  ADS  Google Scholar 

  15. S. S. Murzin, Phys. Usp., 43, No. 4, 349 (2000).

    Article  ADS  Google Scholar 

  16. V. V. Zaitsev and A. V. Stepanov, Solar Phys., 139, No. 2, 343 (1992).

    Article  ADS  Google Scholar 

  17. A. A. Kruglov, Radiophys. Quantum Electron., 54, No. 1, 24 (2011).

    Article  ADS  Google Scholar 

  18. V.P. Silin, Introduction to the Kinetic Theory of Gases [in Russian], URSS, Moscow (2013).

    Google Scholar 

  19. I. I. Bubukina and S. A. Koryagin, J. Exp. Theor. Phys., 108, No. 6, 917 (2009).

    Article  ADS  Google Scholar 

  20. S. A. Koryagin, Radiophys. Quantum Electron., 56, No. 10, 664 (2014).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, The classical thory of fields, Butterworth–Heinemann (1980).

  22. J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. C, 30, 1208 (1984).

    Article  ADS  Google Scholar 

  23. S. A. Arsenyev and S. A. Koryagin, Radiophys. Quantum Electron., 53, No. 11, 650 (2010).

    Article  ADS  Google Scholar 

  24. R. Gajewski, Physica, 47, 575 (1970).

    Article  ADS  Google Scholar 

  25. V. V. Zheleznyakov, S. A. Koryagin, and A.V. Serber, Astron. Lett ., 25, No. 7, 437 (1999).

    ADS  Google Scholar 

  26. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas [in Russian], Yanus-K, Moscow (1997).

    Google Scholar 

  27. S. C. West, Astrophys. J ., 345, 511 (1989).

    Article  ADS  Google Scholar 

  28. G. G. Pavlov and Yu. A. Shibanov, Sov. Astron.., 22, No. 2, 214 (1978).

    ADS  Google Scholar 

  29. S. A. Koryagin and I. A. Balandin, Radiophys. Quantum Electron., 60, No. 3, 171 (2017).

    Article  ADS  Google Scholar 

  30. S. A. Koryagin, J. Exp. Theor. Phys., 90, No. 5, 741 (2000).

    Article  ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory, Pergamon, Oxford (1991).

    Google Scholar 

  32. M. H. Johnson and B. A. Lippmann, Phys. Rev., 76, 828 (1949).

    Article  ADS  Google Scholar 

  33. A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electrons, Amer. Inst. Phys., New York (1986).

    Google Scholar 

  34. M. Abramowitz and I. Stegun, ed., Handbook of Special Functions with Formulas, Graphs, and Mathematical Tables, U.S. National Bureau of Standards (1972).

  35. A. Messiah, Quantum Mechanics, Dover Publ., New York (2014).

    MATH  Google Scholar 

  36. L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

  37. R. P. Feynman, Phys. Rev., 84, 108 (1951).

    Article  ADS  Google Scholar 

  38. J. Schwinger, Phys. Rev., 91, 728 (1953).

    Article  ADS  Google Scholar 

  39. A. M. Perelomov, Generalized coherent states and their applications, Springer, Berlin (1986).

    Book  MATH  Google Scholar 

  40. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Butterworth–Heinemann, Oxford (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koryagin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 10, pp. 791–809, October 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryagin, S.A. Bremsstrahlung at Low-Energy Electron–Nucleus Collisions in the Quantizing Magnetic Field. I. Distant Collisions. Radiophys Quantum El 61, 705–721 (2019). https://doi.org/10.1007/s11141-019-09930-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09930-9

Navigation