Skip to main content
Log in

Scattering of low-energy electrons by positive ions in a magnetic field. II. Resonances, transition probabilities, and transport frequencies

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analyze quantum-mechanically electron-ion collisions in a magnetic field at a low temperature, for which the electron's thermal energy is less than the energy gap between two Landau levels and the electron's Larmor radius is less than the characteristic impact parameter of close collisions without the magnetic field. To calculate transition probabilities, we use the analytical procedure proposed in the first part of our paper. We calculate the energy and lifetime of the resonant (autoionization) states of an electron embedded in the Coulomb electric field of an ion and in a uniform magnetic field. The obtained values coincide in order of magnitude with the known exact numerical values. We find that the electron backward scattering probability irregularly (chaotically) depends on the particle energy and the magnetic field. We propose analytical approximations for the collision transport frequencies, one of which describes the electron braking along the magnetic field and another, equalizing of the temperatures corresponding to the electron motion along and across the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Koryagin, Radiophys. Quantum Electron., 51, 462 (2008).

    Article  Google Scholar 

  2. D. T. Wickramasinghe and L. Ferrario, Publ. Astron. Soc. Pacific, 112, 873 (2000).

    Article  ADS  Google Scholar 

  3. M. Amoretti, C. Amsler, G. Bonomi, et al., Nature, 419, 456 (2002).

    Article  ADS  Google Scholar 

  4. G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett., 89, 213401 (2002).

    Article  ADS  Google Scholar 

  5. B. R. Beck, J. Fajans, and J. H. Malmberg, Phys. Rev. Lett., 68, 317 (1992).

    Article  ADS  Google Scholar 

  6. C. Thompson and R. C. Duncan, Mon. Not. Roy. Astron. Soc., 275, 255 (1995).

    ADS  Google Scholar 

  7. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas [in Russian], Yanus-K, Moscow (1997), § 13.1.

    Google Scholar 

  8. V. V. Zheleznyakov, S. A. Koryagin, and A. V. Serber, Astron. Lett., 25, 437 (1999).

    ADS  Google Scholar 

  9. S. A. Koryagin, J. Exp. Teor. Phys., 90, 741 (2000).

    Article  ADS  Google Scholar 

  10. G. Schmidt, E. E. Kunhardt, and J. L. Godino, Phys. Rev. E, 62, 7512 (2000).

    Article  ADS  Google Scholar 

  11. B. Hu, W. Horton, C. Chiu, and T. Petrosky, Phys. Plasmas, 9, 1116 (2002).

    Article  ADS  Google Scholar 

  12. B. Hu, W. Horton and T. Petrosky, Phys. Rev. E, 65, 056212 (2002).

  13. C. E. Correa, J. R. Correa, and C. A. Ordonez, Phys. Rev. E, 72, 046406 (2005).

    Google Scholar 

  14. H. Friedrich and M. Chu, Phys. Rev. A, 28, 1423 (1983).

    Article  ADS  Google Scholar 

  15. M. C. Chu and H. Friedrich, Phys. Rev. A, 29, 675 (1984).

    Article  ADS  Google Scholar 

  16. H. Friedrich and D. Wintgen, Phys. Rep., 183, 37 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. L. D. Landau and E. N. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Butterworth-Heinemann, Oxford (2003).

    Google Scholar 

  18. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (1972).

  19. V. M. Galitsky, Problems in Quantum Mechanics [in Russian], Editorial URSS, Moscow (2001), Pt. 1, problem 6.25.

    Google Scholar 

  20. J. Ventura, Phys. Rev. A, 8, 3021 (1973).

    Article  ADS  Google Scholar 

  21. G. G. Pavlov and D. G. Yakovlev, Sov. Phys. JETP, 43, 389 (1976).

    ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, Butterworth-Heinemann, Oxford (2000), § 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koryagin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 8, pp. 682–699, August 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koryagin, S.A. Scattering of low-energy electrons by positive ions in a magnetic field. II. Resonances, transition probabilities, and transport frequencies. Radiophys Quantum El 51, 616–632 (2008). https://doi.org/10.1007/s11141-008-9063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-008-9063-1

Keywords

Navigation