Skip to main content
Log in

Large deviations and long-time behavior of stochastic fluid queues with generalized fractional Brownian motion input

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study the large deviation behaviors of a stochastic fluid queue with an input being a generalized Riemann–Liouville (R–L) fractional Brownian motion (FBM), referred to as GFBM. The GFBM is a continuous mean-zero Gaussian process with non-stationary increments, extending the standard FBM with stationary increments. We first derive the large deviation principle for the GFBM by using the weak convergence approach. We then obtain the large deviation principle for the stochastic fluid queue with the GFBM as the input process as well as for an associated running maximum process. Finally, we study the long-time behavior of these two processes; in particular, we show that a steady-state distribution exists and derives the exact tail asymptotics using the aforementioned large deviation principle together with some maximal inequality and modulus of continuity estimates for the GFBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azencott, R., Guivarc’h, Y., Gundy R.: Grandes déviations et applications. In: Ecole d’été de probabilités de Saint-Flour VIII-1978, pp. 1–176. Springer (1980)

  2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    Google Scholar 

  3. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  Google Scholar 

  4. Budhiraja, A., Dupuis P.: Analysis and approximation of rare events. Representations and Weak Convergence Methods. Series Prob. Theory and Stoch. Modelling, 94 (2019)

  5. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of Internet traffic. In: Proceedings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pp. 102–112 (2001)

  6. Chang, C.-S., Yao, D.D., Zajic, T.: Large deviations, moderate deviations, and queues with long-range dependent input. Adv. Appl. Probab. 31(1), 254–278 (1999)

    Article  Google Scholar 

  7. Chen, H., Yao, D.D.: Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization. Stochastic Modelling and Applied Probability (SMAP, volume 46). Springer (2001)

  8. Davies B.: Integral Transforms and Their Applications. Texts in Applied Mathematics (TAM, volume 41). Springer (2002)

  9. Dȩbicki, K., Hashorva, E., Liu, P.: Extremes of \(\gamma \)-reflected Gaussian processes with stationary increments. ESAIM Probab. Stat 21, 495–535 (2017)

    Article  Google Scholar 

  10. Dȩbicki, K., Mandjes, M.: Open problems in Gaussian fluid queueing theory. Queueing Syst. 68(3), 267–273 (2011)

    Article  Google Scholar 

  11. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability (SMAP, volume 38). Springer (2009)

  12. Duncan, T.E., Jin, Y.: Maximum queue length of a fluid model with an aggregated fractional Brownian input. Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz 4, 235–251 (2008)

  13. Ganesh, A.J.: Big Queues. Springer, Berlin (2004)

    Book  Google Scholar 

  14. Hashorva, E., Ji, L.: Approximation of passage times of \(\gamma \)-reflected processes with FBM input. J. Appl. Probab. 51(3), 713–726 (2014)

    Article  Google Scholar 

  15. Hashorva, E., Ji, L., Piterbarg, V.I.: On the supremum of \(\gamma \)-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123(11), 4111–4127 (2013)

    Article  Google Scholar 

  16. Hüsler, J., Piterbarg, V.: Extremes of a certain class of Gaussian processes. Stoch. Process. Appl. 83(2), 257–271 (1999)

    Article  Google Scholar 

  17. Ichiba, T., Pang, G., Taqqu, M.S.: Path properties of a generalized fractional Brownian motion. J. Theor. Probab. 35(1), 550–574 (2022)

    Article  Google Scholar 

  18. Ichiba, T., Pang,G., Taqqu M.S.: Semimartingale properties of a generalized fractional Brownian motion and its mixtures with applications in asset pricing. Working paper (2022). arXiv:2012.00975

  19. Karagiannis, T., Molle, M., Faloutsos, M., Broido, A.: A nonstationary Poisson view of Internet traffic. In: IEEE INFOCOM 2004, vol. 3, pp. 1558–1569. IEEE (2004)

  20. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus. Graduate Texts in Mathematics (GTM, volume 113). Springer (1991)

  21. Klüppelberg, C., Kühn, C.: Fractional Brownian motion as a weak limit of Poisson shot noise processes-with applications to finance. Stoch. Process. Appl. 113(2), 333–351 (2004)

    Article  Google Scholar 

  22. Konstantopoulos, T., Lin, S.-J.: Macroscopic models for long-range dependent network traffic. Queueing Syst. 28(1), 215–243 (1998)

    Article  Google Scholar 

  23. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic. In: Conference Proceedings on Communications Architectures, Protocols and Applications, pp. 183–193 (1993)

  24. Marcus, M., Shepp, L.: Sample behavior of Gaussian processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, p. 423. Univ of California Press (1972)

  25. Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic appriximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12(1), 23–68 (2002)

    Article  Google Scholar 

  26. Norros, I.: On the use of fractional Brownian motion in the theory of connectionless networks. IEEE J. Sel. Areas Commun. 13(6), 953–962 (1995)

    Article  Google Scholar 

  27. Pang, G., Taqqu, M.S.: Nonstationary self-similar Gaussian processes as scaling limits of power-law shot noise processes and generalizations of fractional Brownian motion. High Freq. 2(2), 95–112 (2019)

    Article  Google Scholar 

  28. Park, K., Willinger, W.: Self-similar network traffic: an overview. Self-Similar Network Traffic and Performance Evaluation, pp. 1–38 (2000)

  29. Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  30. Prabhu, N.U.: Stochastic Storage Processes: Queues, Insurance Risk, and Dams, and Data Communication. Springer, Berlin (1998)

    Book  Google Scholar 

  31. Uhlig, S.: Non-stationarity and high-order scaling in TCP flow arrivals: a methodological analysis. ACM SIGCOMM Comput. Commun. Rev. 34(2), 9–24 (2004)

    Article  Google Scholar 

  32. Wang, R., Xiao, Y.: Exact uniform modulus of continuity and Chung’s LIL for the generalized fractional Brownian motion. J. Theor. Probab. 35, 2442–2479 (2022)

    Article  Google Scholar 

  33. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, Berlin (2002)

    Book  Google Scholar 

  34. Willinger, W.: Traffic modeling for high-speed networks: theory versus practice. Inst. Math. Appl. 71, 395 (1995)

    Google Scholar 

Download references

Acknowledgements

We thank the editor and referees for the helpful comments which resulted in the addition of Sects. 4.1 and 5.1 and Remark 5.5. This work is partly supported by the US National Science of Foundation grant DMS-2216765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Auxiliary results

Appendix A: Auxiliary results

In the following, we present a few results that used in the Sect. 5. Define a following continuous map from \(\mathcal {C}_T\) to \(\mathcal {C}_1\):

$$\begin{aligned} J_T : \xi (\cdot )\mapsto \xi (T \cdot ) . \end{aligned}$$
(A.1)

Lemma A.1

For the GFBM X in (2.1), and for any \(T>0\),

$$\begin{aligned} \mathcal {P}_X\circ J_T^{-1}(\cdot )= \mathcal {P}_X (T^{-H} \cdot ), \end{aligned}$$

where \(\mathcal {P}_X\) is the law of X.

Proof

For a given \(n\in \mathbb {N}\), consider \(0<u_1<u_2<u_3<\cdots<u_n<1\). Now from the self-similarity of X [27, Proposition 5.1], it is clear that for \(n=1\),

$$\begin{aligned} Z(T u_1){\mathop {=}\limits ^{\textrm{d}}}T ^{H}Z(u_1). \end{aligned}$$

In other words,

$$\begin{aligned} \mathcal {P}_X\circ J_T^{-1}(\xi (u_1)\in \cdot )= \mathcal {P}_X (\xi (u_1)\in T^{-H} \cdot ). \end{aligned}$$

For \(n>1\), assume that

$$\begin{aligned} \left( (Z(T u_1),Z(T u_2),\ldots , Z(T u_{n-1}))\in A\right) {\mathop {=}\limits ^{\textrm{d}}}\left( (Z( u_1),Z( u_2),\ldots , Z(u_{n-1}))\in T ^{-H}A\right) , \end{aligned}$$
(A.2)

for any \(A\subset \mathcal {B}(\mathbb {R}^{n-1})\). Now consider the Borel set \(B\in \mathcal {B}(\mathbb {R})\). Then, we have

$$\begin{aligned}&\left( (Z(T u_1),Z(T u_2),\ldots , Z(T u_{n},Z(T u_n)))\in A\times B\right) \\&\quad {\mathop {=}\limits ^{\textrm{d}}}\left( (Z( u_1),Z( u_2),\ldots , Z(u_{n-1}))\in T ^{-H}A\times T ^{-H}B\right) . \end{aligned}$$

Since the sets of the form \(A\times B\) generate all the Borel sets of \(\mathbb {R}^{n}\), the self-similarity property (A.2) holds for n and therefore by induction, all finite dimensional distributions. It is trivial to see that the finite dimensional distributions of \(\mathcal {P}_X\circ J_T^{-1}\) and \(\mathcal {P}_X \) are consistent families of measures. Therefore, using the Kolmogorov consistency theorem, we get the desired result. \(\square \)

Remark A.1

The above statement and proof can be generalized to processes with RCLL (right continuous with left limits) paths. Indeed, we construct a similar map \(J_T\) on \(\mathcal {D}_T\) to \(\mathcal {D}_1\) (here, \(\mathcal {D}_T\) is space of functions that right continuous with left limits equipped with the Skorohod topology). We can then proceed exactly as above.

Theorem A.1

[20, Theorem 9.25] For a standard Brownian motion B on [0, 1],

$$\begin{aligned} \mathbb {P}\left( \limsup _{\delta \downarrow 0} \frac{1}{\sqrt{2\delta \log (\frac{1}{\delta })}}\max _{{\mathop {t-s\le \delta }\limits ^{0\le s\le t\le 1}}}|B(t)-B(s)|=1\right) =1. \end{aligned}$$

Remark A.2

Clearly, for every \(\rho >0\), there is \(1>\delta _0>0\) such that for every \(\delta <\delta _0\), we have

$$\begin{aligned} \max _{{\mathop {r-s\le \delta }\limits ^{0\le s\le r\le 1}}}|B(r)-B(s)|\le (1+\rho )\sqrt{2\delta \log \Big (\frac{1}{\delta }\Big )}, \; \quad \mathbb {P}-\text {a.s}. \end{aligned}$$

Corollary A.1

For \(\rho >0\), there is \(1>\delta _0=\delta _0(\rho )>0\) such that whenever \(t>\delta _0\),

$$\begin{aligned} \sup _{0<s\le t} \frac{B(s)}{\sqrt{s\log \Big (\frac{1}{s}\Big )}}\le \max \left\{ \sqrt{2}(1+\rho ),\frac{1}{\sqrt{\delta _0\log \Big (\frac{1}{\delta _0}\Big )}} \sup _{0\le s\le t} B(s)\right\} ,\quad \mathbb {P}-\text {a.s.} \end{aligned}$$

Otherwise,

$$\begin{aligned} \sup _{0<s\le t} \frac{B(s)}{\sqrt{s\log \Big (\frac{1}{s}\Big )}}\le \sqrt{2}(1+\rho ), \quad \mathbb {P}-\text {a.s.} \end{aligned}$$

Proof

From Theorem A.1, as seen already for every \(\rho >0\), there is a \(1>\delta _0>0\), such that for every \(\delta <\delta _0\), we have

$$\begin{aligned} \max _{{\mathop {r-s\le \delta }\limits ^{0\le s\le r\le 1}}}|B(r)-B(s)|\le (1+\rho )\sqrt{2\delta \log \Big (\frac{1}{\delta }\Big )}, \;\quad \mathbb {P}-\text {a.s}. \end{aligned}$$

In particular,

$$\begin{aligned} B(r)-B(0)=B(r)\le (1+\rho )\sqrt{2\delta \log \Big (\frac{1}{\delta }\Big )}, \text { for every }r\le \delta , \quad \mathbb {P}-\text {a.s}. \end{aligned}$$

This implies that we have

$$\begin{aligned} B(r)\le (1+\rho )\sqrt{2\delta \log \Big (\frac{1}{\delta }\Big )}, \text { for every }r= \delta \le \delta _0, \quad \mathbb {P}-\text {a.s} \end{aligned}$$

Assuming that \(t>\delta _0\), we have

$$\begin{aligned} \sup _{0<s\le t} \frac{B(s)}{\sqrt{s\log \Big (\frac{1}{s}\Big )}}&\le \max \left\{ \sqrt{2}(1+\rho ),\frac{1}{\sqrt{\delta _0\log \Big (\frac{1}{\delta _0}\Big )}} \sup _{\delta _0\le s\le t} B(s)\right\} \\&\quad \le \max \left\{ \sqrt{2}(1+\rho ),\frac{1}{\sqrt{\delta _0\log \Big (\frac{1}{\delta _0}\Big )}} \sup _{0\le s\le t} B(s)\right\} , \quad \mathbb {P}- \text {a.s.} \end{aligned}$$

It is easy to see that for \(t\le \delta _0\),

$$\begin{aligned} \sup _{0<s\le t} \frac{B(s)}{\sqrt{s\log \Big (\frac{1}{s}\Big )}}\le \sqrt{2}(1+\rho ), \quad \mathbb {P}- \text {a.s.} \end{aligned}$$

Hence, the proof is complete. \(\square \)

Using the technique similar to Theorem 5.4, we have the following.

Alternate proof of Theorem 5.2

We follow the argument almost exactly as in Theorem 5.4. We have already seen from Lemma 5.5 that for \(t>0\),

$$\begin{aligned} M(t){\mathop {=}\limits ^{\textrm{d}}}t\max _{0\le v\le 1} \left( t^{H-1}Z(v) - kv\right) \doteq {\bar{M}}(t). \end{aligned}$$

And from Lemma 5.6, we know that M(t) \(\mathbb {P}-\) a.s. converges to \(M^*\) as \(t\rightarrow \infty \).

Therefore, we have

$$\begin{aligned} M^*= \lim _{t\rightarrow \infty }{\bar{M}} (t)= \lim _{t\rightarrow \infty } t\max _{0\le v\le 1} \left( t^{H-1}Z(v) - kv\right) ,\quad \mathbb {P}-\text {a.s}. \end{aligned}$$

Now we replace t in \({\bar{M}}(t)\) by \( \varepsilon {^{-1}}\) and treat \(t\rightarrow \infty \) as \(\varepsilon \rightarrow 0\). In other words, we have

$$\begin{aligned} M^*= \lim _{\varepsilon \rightarrow 0}{\bar{M}}( \varepsilon ^{-1})= \lim _{\varepsilon \rightarrow 0} \varepsilon ^{-1}\max _{0\le v\le 1} \left( \varepsilon ^{1-H} Z(v) - kv\right) ,\; \mathbb {P}-\text {a.s}. \end{aligned}$$
(A.3)
$$\begin{aligned} {\bar{M}}( \varepsilon ^{-1})= \varepsilon ^{-1}\max _{0\le v\le 1} \left( \varepsilon ^{1-H}Z(v) - kv\right) . \end{aligned}$$

From Lemma 4.1, we know that \(\varepsilon {\bar{M}}( \varepsilon ^{-1})\) satisfies an LDP. From (A.3), we also know that

$$\begin{aligned} |M^*- {\bar{M}}( \varepsilon ^{-1})|=g(\varepsilon ), \end{aligned}$$

where g is a deterministic positive function such that \(g(x)\rightarrow 0\) as \(x \rightarrow 0\), \( \mathbb {P}-\) a.s. Then, we have \( |\varepsilon M^*- \varepsilon {\bar{M}}( \varepsilon ^{-1})|=\varepsilon g(\varepsilon ).\)

Now we are in a position to derive the tail behavior of \(M^*\):

$$\begin{aligned} \limsup _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon M^*>1 \right) \le \limsup _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon {\bar{M}}(\varepsilon ^{-1})> 1 -\varepsilon g(\varepsilon ) \right) . \end{aligned}$$

Similarly,

$$\begin{aligned} \liminf _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon {\bar{M}}(\varepsilon ^{-1})>1 \right) \le \liminf _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon M^*> 1 -\varepsilon g(\varepsilon ) \right) . \end{aligned}$$

From Lemma 4.1 with \(T=1\), we have

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon M^*>1 \right)&= \lim _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon {\bar{M}}(\varepsilon ^{-1})> 1 \right) . \end{aligned}$$

We now notice that

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon M^*>1 \right) = \lambda ^{2(H-1)}\lim _{{\bar{\varepsilon }}\rightarrow 0} {\bar{\varepsilon }}^{2(1-H)}\log \mathbb {P}\left( {\bar{\varepsilon }} M^*>\lambda \right) , \end{aligned}$$
(A.4)

by changing \(\varepsilon \) to \(\lambda ^{-1}{\bar{\varepsilon }} \). With the same argument as above, for \(\lambda >0\), we have the following

$$\begin{aligned} \lambda ^{2(H-1)}\lim _{{\bar{\varepsilon }}\rightarrow 0} {\bar{\varepsilon }}^{2(1-H)}\log \mathbb {P}\left( {\bar{\varepsilon }} M^*>\lambda \right)&= \lambda ^{2(H-1)} \lim _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( \varepsilon {\bar{M}}( \varepsilon ^{-1})> \lambda \right) \\&= {\left\{ \begin{array}{ll} -\frac{(\lambda +k)^2}{2}, &{} 1< \frac{\lambda H}{k(1-H)},\\ -\frac{k^{2H}}{2H^{2H} (1-H)^{2(1-H)}}\lambda ^{2(1-H)}, &{} \text { otherwise.} \end{array}\right. } \end{aligned}$$

Therefore, choosing \(\lambda > \frac{k(1-H)}{H}\), from (A.4), we have

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \varepsilon ^{2(1-H)}\log \mathbb {P}\left( M^*>\varepsilon ^{-1} \right) =- \frac{k^{2H}}{2H^{2H} (1-H)^{2(1-H)}}. \end{aligned}$$

This completes the proof. \(\square \)

Remark A.3

The intuition for the choice \(\lambda >\frac{k(1-H)}{H}\) in the end of the proof is that (A.4) suggests us a scale invariance of the tail of \(M^*\). Therefore, the decay rate of tail asymptotics is always one of the two cases in (4.10) which scales in \(\lambda \) as \(\lambda ^{2(1-H)}\). This case happens when \(\lambda >\frac{k(1-H)}{H}\).

The next lemma concerns the locally stationary property of the GFBM process and is used in the proof in Sect. 5.1. Recall the definition of local stationarity for a self-similar Gaussian process in (5.28).

Lemma A.2

The GFBM \(X(\cdot )\) defined in (2.1) is locally stationary.

Proof

For \(0\le s\le t\),

$$\begin{aligned} \mathbb {E}[|t^{-H}X(t)-s^{-H}X(s)|^2]&= t^{-2H}\mathbb {E}[|X(t)-X(s)|^2] - (t^{-H}-s^{-H})^2\mathbb {E}[|X(s)|^2] \nonumber \\&\quad + 2t^{-H}(t^{-H}-s^{-H})\mathbb {E}[(X(t)-X(s))X(s)] \nonumber \\&= t^{-2H}\mathbb {E}[|X(t)-X(s)|^2] \nonumber \\&\quad - (ts)^{-2H}(t^{H}-s^{H})^2\mathbb {E}[|X(s)|^2] \nonumber \\&\quad + 2t^{-2H}s^{-H}(s^{H}-t^{H})\mathbb {E}[(X(t)-X(s))X(s)] \end{aligned}$$
(A.5)

To check that

$$\begin{aligned} \lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \frac{\mathbb {E}[|t^{-H}X(t)-s^{-H}X(s)|^2]}{(t-s)^{2H}} \text { exists,} \end{aligned}$$
(A.6)

it suffices to prove that the corresponding limits exist for the three terms on the right-hand side of (A.5). Before we proceed to do that, using (2.2) and (2.3), we rewrite \(\mathbb {E}[|X(t)-X(s)|^2]\) and \(\mathbb {E}[(X(t)-X(s))X(s)]\) by making the following change of variables: \(u=s-(t-s)v\) and \(v=xw\) with \(x=\frac{s}{t-s}\) for integrals over [0, s] and \(u=s+ (t-s)v\) for integrals over [st]. We have

$$\begin{aligned} \mathbb {E}[|X(t)-X(s)|^2]&= c^2\int _s^t(t-u)^{2\alpha } u^{-\gamma }du \nonumber \\&\quad +c^2 \int _0^s ((t-u)^\alpha -(s-u)^\alpha )^2u^{-\gamma } du\nonumber \\&= c^2 (t-s)^{2H} \bigg (\int _0^1 (1-v)^{2\alpha } \Big (v+ \frac{s}{t-s}\Big )^{-\gamma } dv\nonumber \\&\quad + \int _0^1(1-w)^{-\gamma } \big ((1+xw)^\alpha -(xw)^\alpha \big )^2x^{1-\gamma }dw\bigg ), \end{aligned}$$
(A.7)
$$\begin{aligned} \mathbb {E}[(X(t)-X(s))X(s)]&=c^2\int _0^s \big ((t-u)^\alpha -(s-u)^\alpha \big ) (s-u)^\alpha u^{-\gamma } du\nonumber \\&= c^2 (t-s)^{2H} \int _0^1(1-w)^{-\gamma } \big ((1+xw)^\alpha \nonumber \\&\quad -(xw)^\alpha \big )(xw)^{\alpha }x^{1-\gamma }dw. \end{aligned}$$
(A.8)

It is clear that

$$\begin{aligned} \int _0^1 (1-v)^{2\alpha }\Big (v+ \frac{s}{t-s}\Big )^{-\gamma } dv\le \int _0^1 (1-v)^{2\alpha } v^{-\gamma } dv= \mathbf{{B}}(1+2\alpha ,1-\gamma )<\infty . \end{aligned}$$
(A.9)

Recall that \(\mathbf{{B}}(a,b)\) is the Beta function for \(a,b>0\). Since \(-\frac{1}{2}+\frac{\gamma }{2}<\alpha <\frac{1+\gamma }{2}\), we have

$$\begin{aligned}&\sup _{y>0}\Big \{\int _0^1(1-w)^{-\gamma } \big ((1+yw)^\alpha -(yw)^\alpha \big )^2y^{1-\gamma }dw\Big \}< K \textbf{B}(1-\gamma ,\gamma )<\infty , \nonumber \\&\quad \text { for some }K>0. \end{aligned}$$
(A.10)

Indeed, we have

$$\begin{aligned}&\sup _{y>0}\Big \{\int _0^1(1-w)^{-\gamma }\big ((1+yw)^\alpha -(yw)^\alpha \big )^2y^{1-\gamma }dw\Big \}\\&\quad \le \big ( \sup _{y>0} g(y)\big )^2 \int _0^1(1-w)^{-\gamma } w^{1-\gamma }dw\\&\quad \le \big ( \sup _{y>0} g(y)\big )^2 \textbf{B}(1-\gamma ,\gamma ). \end{aligned}$$

Here,

$$\begin{aligned} g(y)\doteq \big ((1+y)^\alpha -(y)^\alpha \big )y^{\frac{1}{2}-\frac{\gamma }{2}} \text { for }y\in (0,\infty ). \end{aligned}$$

Now showing that \(\sup _{y>0} g(y)<\infty \), we are done. To that end, we show that \(\lim _{y\rightarrow 0}g(y)\) and \(\lim _{y\rightarrow \infty }g(y)\) both exist and are finite. Then from continuity of \(g(\cdot )\) in \((0,\infty )\), we know that g(y) is finite for every \(y\in (0,\infty )\) and it will then imply that \(\sup _{y>0} g(y)<\infty \). Consider

$$\begin{aligned}&\lim _{y\rightarrow 0} g(y)= \lim _{y\rightarrow 0}\Big ( (1+y)^\alpha y^{\frac{1}{2}-\frac{\gamma }{2}} -y^{\alpha +\frac{1}{2}-\frac{\gamma }{2}}\Big )= 0, \end{aligned}$$

where we used \(\frac{1}{2}-\frac{\gamma }{2}>0\) and \(\alpha > -\frac{1}{2}+\frac{\gamma }{2}\). Now consider

$$\begin{aligned} \lim _{y\rightarrow \infty } g(y)=\lim _{y\rightarrow \infty } \frac{(1+y^{-1})^\alpha -1}{y^{-\alpha -\frac{1}{2}+\frac{\gamma }{2}}}&{\mathop {=}\limits ^{H}} \lim _{y\rightarrow \infty } \frac{-\alpha (1+y^{-1})^{\alpha -1} y^{-2}}{({-\alpha -\frac{1}{2}+\frac{\gamma }{2}})y^{{-\alpha -\frac{1}{2}+\frac{\gamma }{2}}-1}}\\&= \lim _{y\rightarrow \infty } \frac{-\alpha (1+y^{-1})^{\alpha -1} y^{\alpha -\frac{1}{2}-\frac{\gamma }{2}}}{({-\alpha -\frac{1}{2}+\frac{\gamma }{2}})}\\&= 0. \end{aligned}$$

In the above, \({\mathop {=}\limits ^{H}}\) denotes that we used L’Hôpital’s rule, as the we have a \(\frac{0}{0}\) form (recall that \(\alpha +\frac{1}{2}-\frac{\gamma }{2}>0\)). To get the final equality, we used the fact that \(\alpha <\frac{1}{2}+\frac{\gamma }{2}.\)

Now consider (observe that it is \((t-s)^H\), instead of \((t-s)^{2H}\)),

$$\begin{aligned}&(t-s)^{H} \Big ( \int _0^1(1-w)^{-\gamma } \big ((1+xw)^\alpha -(xw)^\alpha \big )(xw)^{\alpha }x^{1-\gamma }dw \Big )\nonumber \\&\quad \le s^{H} \sup _{y>0} \Big \{y^{-H +\alpha -\gamma +1} \big ((1+y)^\alpha -y^\alpha \big )\Big \} \int _0^1 (1-w)^{-\gamma } w^{\gamma -1}dw \nonumber \\&\quad \le s^{H}{} \textbf{B}(1-\gamma ,\gamma ) \sup _{y>0} \Big \{y^{\frac{1}{2}-\frac{\gamma }{2}} \big ((1+y)^\alpha -y^\alpha \big )\Big \}, \text { since } H=\alpha -\frac{\gamma }{2}+\frac{1}{2},\nonumber \\&\quad \le s^{H}{} \textbf{B}(1-\gamma ,\gamma ) \sup _{y>0} \Big \{y^{\frac{1}{2}-\frac{\gamma }{2}+\alpha } \big ((1+y^{-1})^\alpha -1 \big )\Big \}<\infty . \end{aligned}$$
(A.11)

The finiteness of

$$\begin{aligned} \sup _{y>0} \Big \{y^{\frac{1}{2}-\frac{\gamma }{2}+\alpha } \big ((1+y^{-1})^\alpha -1 \big )\Big \} \end{aligned}$$

can be proved in the similar way as done for g(y). From (A.9) and (A.10) ((A.11), respectively.), we can conclude that quantity in parenthesis of (A.7) ((A.8), respectively) is continuous in (st) when \(\delta <s\le t\), for every \(\delta >0\).

We are finally in a position to prove local stationarity of \(X(\cdot )\). For the first term in (A.5), from (A.7) and continuity of the term in the parenthesis, we know that

$$\begin{aligned} \lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} t^{-2H}\frac{\mathbb {E}[|X(t)-X(s)|^2]}{(t-s)^{2H}} \end{aligned}$$

exists uniformly for \(t_0>\delta \), for any \(\delta >0\). To see that the corresponding limit of the second term in (A.5) exists uniformly for \(t_0>\delta \), for any \(\delta >0\), we write

$$\begin{aligned} \lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \frac{(ts)^{-2H}(t^{H}-s^{H})^2\mathbb {E}[|X(s)|^2]}{(t-s)^{2H}}=\lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \Big (\frac{t^{H}-s^{H}}{(t-s)^{H}}\Big )^2(ts)^{-2H}\mathbb {E}[|X(s)|^2] \end{aligned}$$

and from H-Hölder continuity of function \(f(t)= t^H\), we can conclude the existence of the above limit.

Now, to see that the corresponding limit of the third term in (A.5) exists uniformly for \(t_0>\delta \), for any \(\delta >0\), we write

$$\begin{aligned}&\lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \frac{t^{-2H}s^{-H}(s^{H}-t^{H})\mathbb {E}[(X(t)-X(s))X(s)]}{(t-s)^{2H}}\\&\quad =\lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \frac{t^{-2H}s^{-H}(s^{H}-t^{H})}{(t-s)^H}\frac{\mathbb {E}[(X(t)-X(s))X(s)]}{(t-s)^{H}}. \end{aligned}$$

From the H-Hölder continuity of function \(f(t)=t^H\), we obtain

$$\begin{aligned} \lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}} \frac{t^{-2H}s^{-H}(s^{H}-t^{H})}{(t-s)^H} \text {exists} \end{aligned}$$

uniformly for \(t_0>\delta \), for any \(\delta >0\) and from (A.8) and continuity of the quantity inside the parenthesis, we know that

$$\begin{aligned} \lim _{{\mathop {s\rightarrow t_0}\limits ^{t\rightarrow t_0}}}\frac{\mathbb {E}[(X(t)-X(s))X(s)]}{(t-s)^{H}} \text { exists.} \end{aligned}$$

Thus, we have proved that (A.6) holds. This proves the result. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anugu, S.R., Pang, G. Large deviations and long-time behavior of stochastic fluid queues with generalized fractional Brownian motion input. Queueing Syst 105, 47–98 (2023). https://doi.org/10.1007/s11134-023-09889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-023-09889-5

Keywords

Navigation