Skip to main content
Log in

Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The generalized fractional Brownian motion (GFBM) \(X:=\{X(t)\}_{t\ge 0}\) with parameters \(\gamma \in [0, 1)\) and \(\alpha \in \left( -\frac{1}{2}+\frac{\gamma }{2}, \, \frac{1}{2}+\frac{\gamma }{2} \right) \) is a centered Gaussian H-self-similar process introduced by Pang and Taqqu (2019) as the scaling limit of power-law shot noise processes, where \(H = \alpha -\frac{\gamma }{2}+\frac{1}{2} \in (0,1)\). When \(\gamma = 0\), X is the ordinary fractional Brownian motion. When \(\gamma \in (0, 1)\), GFBM X does not have stationary increments, and its sample path properties such as Hölder continuity, path differentiability/non-differentiability, and the functional law of the iterated logarithm (LIL) have been investigated recently by Ichiba et al. (J Theoret Probab 10.1007/s10959-020-01066-1, 2021). They mainly focused on sample path properties that are described in terms of the self-similarity index H (e.g., LILs at infinity or at the origin). In this paper, we further study the sample path properties of GFBM X and establish the exact uniform modulus of continuity, small ball probabilities, and Chung’s laws of iterated logarithm at any fixed point \(t > 0\). Our results show that the local regularity properties away from the origin and fractal properties of GFBM X are determined by the index \(\alpha +\frac{1}{2}\) instead of the self-similarity index H. This is in contrast with the properties of ordinary fractional Brownian motion whose local and asymptotic properties are determined by the single index H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank the referee for raising this interesting question.

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  2. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170–176 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theoret. Probab. 8, 877–903 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardet, J.-M., Surgailis, D.: Measuring the roughness of random paths by increment ratios. Bernoulli 17(2), 749–780 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bardet, J.-M., Surgailis, D.: Nonparametric estimation of the local Hurst function of multifractional Gaussian processes. Stoch. Process. Appl. 123(3), 1004–1045 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benassi, A., Jaffard, S., Roux, D.: Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13, 19–90 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  8. Falconer, K.J.: Tangent fields and the local structure of random fields. J. Theoret. Probab. 15(3), 731–750 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Falconer, K.J.: The local structure of random processes. J. London Math. Soc. 67(3), 657–672 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Falconer, K.J.: Fractal Geometry - Mathematical Foundations And Applications, 3rd edn. Wiley, Chichester (2014)

    MATH  Google Scholar 

  11. Ichiba, T., Pang, G.D., Taqqu, M.S.: Path properties of a generalized fractional Brownian motion. J. Theoret. Probab. (2021). https://doi.org/10.1007/s10959-020-01066-1

    Article  MATH  Google Scholar 

  12. Ichiba, T., Pang, G.D., Taqqu, M.S.: Semimartingale properties of a generalized fractional Brownian motion and its mixtures with applications in finance (2020). arXiv:2012.00975

  13. Jain, N.C., Marcus, M.B.: Continuity of sub-Gaussian processes. Probability on Banach spaces. Adv. Probab. Relat. Top. 4, 81–196 (1978)

    Google Scholar 

  14. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  15. Kawada, T., Kôno, N.: A remark on nowhere differentiability of sample functions of Gaussian processes. Proc. Jpn. Acad. 47, 932–934 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics, 119. American Mathematical Society (2014)

  17. Klüppelberg, C., Kühn, C.: Fractional brownian motion as a weak limit of Poisson shot noise processes with applications to finance. Stoch. Process. Appl. 113, 333–351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lachal, A.: Local asymptotic classes for the successive primitives of Brownian motion. Ann. Probab. 25, 1712–1734 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ledoux, M.: Isoperimetry and Gaussian analysis. Lectures on probability theory and statistics (Saint-Flour, 1994). Lecture Notes in Math., 1648, 165–294. Springer-Verlag, Berlin (1996)

  20. Lévy, P.: Random functions: general theory with special references to Laplacian random functions. Univ. Calif. Publ. Stat. 1, 331–390 (1953)

    MathSciNet  Google Scholar 

  21. Li, W.V., Shao, Q.-M.: Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statistics, 19, (C.R. Rao and D. Shanbhag, editors), pp. 533–597, North-Holland (2001)

  22. Loéve, L.: Probability Theory I. Springer, New York (1977)

    Book  MATH  Google Scholar 

  23. Mandelbrot, B., Van Ness, J.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes, and Local Times. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  25. Marinucci, D., Robinson, P.M.: Alternative forms of fractional Brownian motion. J. Statist. Plann. Inference 80, 111–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Meerschaert, M., Wang, W., Xiao, Y.: Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365(2), 1081–1107 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Monrad, D., Rootzén, H.: Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Theory Relat. Fields 101, 173–192 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pang, G.D., Taqqu, M.S.: Nonstationary self-similar Gaussian processes as scaling limits of power-law shot noise processes and generalizations of fractional Brownian motion. High Freq. 2(2), 95–112 (2019)

    Article  Google Scholar 

  29. Pickands, J., III.: Maxima of stationary Gaussian processes. Z. Wahrsch. Verw. Gebeite 7, 190–223 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  31. Skorniakov, V.: On a covariance structure of some subset of self-similar Gaussian processes. Stoch. Process. Appl. 129(6), 1903–1920 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  32. Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23, 767–775 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Talagrand, M.: Lower classes of fractional Brownian motion. J. Theoret. Probab. 9, 191–213 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Talagrand, M.: Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112, 545–563 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tudor, C.A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13, 1023–1052 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, R., Xiao, Y.: Lower functions and Chung’s LILs of the generalized fractional Brownian motion (2021). arXiv:2105.03613

  37. Wang, W., Su, Z., Xiao, Y.: The moduli of non-differentiability for Gaussian random fields with stationary increments. Bernoulli 26, 1410–1430 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997)

    Article  MATH  Google Scholar 

  39. Xiao, Y.: Strong local nondeterminism and the sample path properties of Gaussian random fields. Asymptotic Theory in Probability and Statistics with Applications (T.L. Lai, Q. Shao and L. Qian, eds.) 136-176. Higher Education Press, Beijing (2007)

  40. Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: A Mini-course on Stochastic Partial Differential Equations, D. Khoshnevisan, F. Rassoul-Agha, editors, Lecture Notes in Math. 1962, pp 145-212, Springer, New York (2009)

  41. Yeh, J.: Differentiability of sample functions in Gaussian processes. Proc. Amer. Math. Soc., 18(1), 105-108, (1967). Correction in Proc. Amer. Math. Soc., 19(4), 843, (1968)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and corrections which have led to significant improvement of this paper. Part of the research in this paper was conducted during R. Wang’s visit to Michigan State University (MSU). He thanks the Department of Statistics and Probability at MSU for their hospitality, and is thankful for the financial support from the CSC Fund, NNSFC 11871382, and the Fundamental Research Funds for the Central Universities 2042020kf0031. The research of Y. Xiao is partially supported by NSF grant DMS-1855185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xiao, Y. Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion. J Theor Probab 35, 2442–2479 (2022). https://doi.org/10.1007/s10959-021-01148-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-021-01148-8

Keywords

Mathematics Subject Classification (2020)

Navigation