Skip to main content
Log in

Path Properties of a Generalized Fractional Brownian Motion

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power-law shape function and non-stationary noises with a power-law variance function. In this paper, we study sample path properties of the generalized fractional Brownian motion, including Hölder continuity, path differentiability/non-differentiability, and functional and local law of the iterated logarithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theor. Probab. 8(4), 877–903 (1995)

    Article  MathSciNet  Google Scholar 

  2. Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014)

    Article  Google Scholar 

  3. Bai, S., Taqqu, M.S.: Generalized Hermite processes, discrete chaos and limit theorems. Stoch. Process. Appl. 124(4), 1710–1739 (2014)

    Article  MathSciNet  Google Scholar 

  4. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M.: Multipower variation for Brownian semistationary processes. Bernoulli 17(4), 1159–1194 (2011)

    Article  MathSciNet  Google Scholar 

  5. Barndorff-Nielsen, O.E., Schmiegel, J.: Brownian semistationary processes and volatility/intermittency. Adv. Financ. Model. 8, 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Basse, A.: Spectral representation of Gaussian semimartingales. J. Theor. Probab. 22(4), 811 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bassler, K.E., McCauley, J.L., Gunaratne, G.H.: Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets. Proc. Natl. Acad. Sci. 104(44), 17287–17290 (2007)

    Article  Google Scholar 

  8. Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. Quant. Finance 16(6), 887–904 (2016)

    Article  MathSciNet  Google Scholar 

  9. Berman, S.M.: An asymptotic bound for the tail of the distribution of the maximum of a Gaussian process. Annales de l’IHP Probabilités et statistiques 21, 47–57 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer Science & Business Media, Cham (2008)

    Book  Google Scholar 

  11. Fan, J.Y., Hamza, K., Klebaner, F.: Mimicking self-similar processes. Bernoulli 21(3), 1341–1360 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is rough. Quant. Finance 18(6), 933–949 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hobson, D.: Mimicking martingales. Ann. Appl. Probab. 26(4), 2273–2303 (2016)

    Article  MathSciNet  Google Scholar 

  14. Klüppelberg, C., Kühn, C.: Fractional Brownian motion as a weak limit of Poisson shot noise processes with applications to finance. Stoch. Process. Appl. 113(2), 333–351 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lévy, P.: Random Functions: General Theory with Special Reference to Laplacian Random Functions, vol. 1. University of California Press, Berkeley (1953)

    MATH  Google Scholar 

  16. Livieri, G., Mouti, S., Pallavicini, A., Rosenbaum, M.: Rough volatility: evidence from option prices. IISE Trans. 50(9), 767–776 (2018)

    Article  Google Scholar 

  17. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  18. McCauley, J.L., Bassler, K.E., Gunaratne, G.H.: Martingales, nonstationary increments, and the efficient market hypothesis. Phys. A Stat. Mech. Appl. 387(15), 3916–3920 (2008)

    Article  MathSciNet  Google Scholar 

  19. Pang, G., Taqqu, M.S.: Nonstationary self-similar Gaussian processes as scaling limits of power-law shot noise processes and generalizations of fractional Brownian motion. High Freq. 2(2), 95–112 (2019)

    Article  Google Scholar 

  20. Pipiras, V., Taqqu, M.S.: Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 45. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  21. Revez, D., Marc, Y.: Continuous Martingales and Brownian motion, vol. 293. Springer-Verlag, Berlin Heidelberg (1991)

  22. Taqqu, M.S.: Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Probab. Theory Relat. Fields 40(3), 203–238 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Taqqu, M.S., Czado, C.: A survey of functional laws of the iterated logarithm for self-similar processes. Stoch. Models 1(1), 77–115 (1985)

    Article  MathSciNet  Google Scholar 

  24. Yazigi, A.: Representation of self-similar Gaussian processes. Stat. Probab. Lett. 99, 94–100 (2015)

    Article  MathSciNet  Google Scholar 

  25. Yeh, J.: Differentiability of sample functions in Gaussian processes. Proc. Am. Math. Soc. 18(1), 105–108 (1967)

    Article  MathSciNet  Google Scholar 

  26. Yeh, J.: Correction to: Differentiability of sample functions in Gaussian processes. Proc. Am. Math. Soc. 19(4), 843 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers and associate editor for their careful reading and suggestions on various improvements of the paper. In particular, the associate editor pointed out a gap in Sect. 4 in the paper, which led to a significant improvement of our understanding of the process. Tomoyuki Ichiba was supported in part by NSF Grants DMS-1615229 and DMS-2008427. Guodong Pang was supported in part by CMMI-1635410, DMS/CMMI-1715875 and the Army Research Office through Grant W911NF-17-1-0019. Murad S. Taqqu was supported in part by Simons Foundation Grant 569118 at Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichiba, T., Pang, G. & Taqqu, M.S. Path Properties of a Generalized Fractional Brownian Motion. J Theor Probab 35, 550–574 (2022). https://doi.org/10.1007/s10959-020-01066-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01066-1

Keywords

Mathematics Subject Classification

Navigation