Skip to main content
Log in

A measurement device independent multi-party quantum key agreement protocol with identity authentication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multi-party quantum key agreement (MQKA) is a significant technique for generating shared keys among multiple participants in a secure and fair manner but dealing with imperfect quantum measurement devices presents practical challenges. In this paper, we propose a feasible measurement device independent multi-party quantum key agreement (MDI-MQKA) protocol with identity authentication, based on the BB84 polarization states and the GHZ entangled states. In our proposed MDI-MQKA protocol, participation is restricted to authenticated individuals, avoiding the possibility of impersonating participants. Following the execution of MDI-MQKA, each authenticated participant can acquire their respective private keys in a fair manner, with the assistance of the third party. We analyze and prove the correctness, feasibility of authentication, security, and fairness of the proposed MDI-MQKA protocol in detail. The proposed MDI-MQKA protocol represents a promising investigation into MQKA protocols and measurement device independent technologies, which can help advance the practical application of quantum information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Nadlinger, D., Drmota, P., Nichol, B., Araneda, G., Main, D., Srinivas, R., Lucas, D., Ballance, C., Ivanov, K., Tan, E.-Z., et al.: Experimental quantum key distribution certified by bell’s theorem. Nature 607(7920), 682–686 (2022)

    ADS  Google Scholar 

  2. Wang, S., Yin, Z.-Q., He, D.-Y., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., Chen, W., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16(2), 154–161 (2022)

    ADS  Google Scholar 

  3. Zhang, Y., Chen, Z., Pirandola, S., Wang, X., Zhou, C., Chu, B., Zhao, Y., Xu, B., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125(1), 010502 (2020)

    ADS  Google Scholar 

  4. Dutta, A., Pathak, A.: New protocols for quantum key distribution with explicit upper and lower bound on secret-key rate. arXiv:2212.13089 (2022)

  5. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    ADS  MathSciNet  Google Scholar 

  6. Yang, Y.-G., Li, B.-R., Kang, S.-Y., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18, 1–17 (2019)

    MathSciNet  Google Scholar 

  7. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with ghz states. Quantum Inf. Process. 13, 2587–2594 (2014)

    ADS  MathSciNet  Google Scholar 

  8. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    ADS  MathSciNet  Google Scholar 

  9. Wei, C.-Y., Cai, X.-Q., Huang, S.-L., Lang, X.-L., Wang, T.-Y.: Loss-tolerant quantum multi-party key agreement without quantum storage. Opt. Express 30(22), 40569–40583 (2022)

    ADS  Google Scholar 

  10. Xu, T.-J., Chen, Y., Geng, M.-J., Ye, T.-Y.: Single-state multi-party semiquantum key agreement protocol based on multi-particle ghz entangled states. Quantum Inf. Process. 21(7), 266 (2022)

    ADS  MathSciNet  Google Scholar 

  11. Liao, Q., Liu, H., Zhu, L., Guo, Y.: Quantum secret sharing using discretely modulated coherent states. Phys. Rev. A 103(3), 032410 (2021)

    ADS  MathSciNet  Google Scholar 

  12. Williams, B.P., Lukens, J.M., Peters, N.A., Qi, B., Grice, W.P.: Quantum secret sharing with polarization-entangled photon pairs. Phys. Rev. A 99(6), 062311 (2019)

    ADS  Google Scholar 

  13. Gao, Z., Li, T., Li, Z.: Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63(12), 120311 (2020)

    ADS  Google Scholar 

  14. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., Wen, Q.-Y.: Fault-tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)

    ADS  Google Scholar 

  15. Wei, C.-Y., Cai, X.-Q., Wang, T.-Y., Qin, S.-J., Gao, F., Wen, Q.-Y.: Error tolerance bound in qkd-based quantum private query. IEEE J. Sel. Areas Commun. 38(3), 517–527 (2020)

    Google Scholar 

  16. Gao, F., Qin, S., Huang, W., Wen, Q.: Quantum private query: a new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62, 1–12 (2019)

    Google Scholar 

  17. Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T.-Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2017)

    MathSciNet  Google Scholar 

  18. Li, X., Zhang, K., Zhang, L., Zhao, X.: A new quantum multiparty simultaneous identity authentication protocol with the classical third-party. Entropy 24(4), 483 (2022)

    ADS  MathSciNet  Google Scholar 

  19. Qian, Y., Gui, C., Liu, B., Huang, W., Xu, B.-J.: Quantum identity authentication based on round robin differential phase shift communication line. Int. J. Theor. Phys. 61(2), 44 (2022)

    Google Scholar 

  20. Rao, B.D., Jayaraman, R.: A novel quantum identity authentication protocol without entanglement and preserving pre-shared key information. Quantum Inf. Process. 22(2), 92 (2023)

    ADS  MathSciNet  Google Scholar 

  21. Dutta, A., Pathak, A.: A short review on quantum identity authentication protocols: how would bob know that he is talking with alice? Quantum Inf. Process. 21(11), 369 (2022)

    ADS  MathSciNet  Google Scholar 

  22. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 22(1), 13 (2022)

    ADS  MathSciNet  Google Scholar 

  23. Chen, G., Wang, Y., Jian, L., Zhou, Y., Liu, S., Luo, J., Yang, K.: Quantum identity authentication protocol based on flexible quantum homomorphic encryption with qubit rotation. J. Appl. Phys. 133, 064402 (2023)

    Google Scholar 

  24. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    ADS  Google Scholar 

  25. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1 (2004)

    Google Scholar 

  26. Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    ADS  MathSciNet  Google Scholar 

  27. Min, S.-Q., Chen, H.-Y., Gong, L.-H.: Novel multi-party quantum key agreement protocol with g-like states and bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)

    MathSciNet  Google Scholar 

  28. Liu, H.-N., Liang, X.-Q., Jiang, D.-H., Xu, G.-B., Zheng, W.-M.: Multi-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 18, 1–10 (2019)

    ADS  MathSciNet  Google Scholar 

  29. Wu, Y.-T., Chang, H., Guo, G.-D., Lin, S.: Multi-party quantum key agreement protocol with authentication. Int. J. Theor. Phys. 60, 4066–4077 (2021)

    MathSciNet  Google Scholar 

  30. Dutta, A., Pathak, A.: Collective attack free controlled quantum key agreement without quantum memory. arXiv:2308.05470 (2023)

  31. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4(10), 686–689 (2010)

    ADS  Google Scholar 

  32. Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    ADS  Google Scholar 

  33. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)

    ADS  Google Scholar 

  34. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  35. Cai, X.-Q., Liu, Z.-F., Wei, C.-Y., Wang, T.-Y.: Long distance measurement-device-independent three-party quantum key agreement. Phys. A Stat. Mech. Appl. 607, 128226 (2022)

    MathSciNet  Google Scholar 

  36. Zhou, Y.-H., Xu, Y., Yang, Y.-G., Shi, W.-M., Chen, Z.-S.: Measurement-device-independent quantum key agreement against collective noisy channel. Int. J. Theor. Phys. 61(7), 201 (2022)

    MathSciNet  Google Scholar 

  37. Bouchard, F., Sit, A., Zhang, Y., Fickler, R., Miatto, F.M., Yao, Y., Sciarrino, F., Karimi, E.: Two-photon interference: the hong-ou-mandel effect. Rep. Prog. Phys. 84(1), 012402 (2020)

    ADS  MathSciNet  Google Scholar 

  38. Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    ADS  Google Scholar 

  39. Hua, X., Hu, M., Guo, B.: Multi-user measurement-device-independent quantum key distribution based on ghz entangled state. Entropy 24(6), 841 (2022)

    ADS  MathSciNet  Google Scholar 

  40. Yang, Y.-H., Mi, G.-W., Geng, S.-J., Liu, Q.-Q., Zuo, H.-J.: Strong nonlocality with genuine entanglement based on ghz-like states in multipartite quantum systems. Phys. Scr. 98(1), 015104 (2022)

    ADS  Google Scholar 

  41. Inamori: Security of practical time-reversed epr quantum key distribution. Algorithmica 34, 340–365 (2002)

    MathSciNet  Google Scholar 

  42. Standaert, F.-X.: Introduction to side-channel attacks. In: Secure Integrated Circuits and Systems, pp. 27–42. Springer, Boston, MA, USA (2010)

  43. Xu, Y., Wang, C., Cheng, K., Zhu, H.: A novel three-party mutual authentication quantum key agreement protocol with ghz states. Int. J. Theor. Phys. 61(10), 245 (2022)

    MathSciNet  Google Scholar 

  44. He, Y.-F., Yue, Y.-R., Di, M., Ma, W.-P.: Two-party mutual authentication quantum key agreement protocol. Int. J. Theor. Phys. 61(5), 145 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful comments. This research was supported by the Open Foundation of State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (SKLNST-2021-1-05) and the Key Lab of Information Network Security, Ministry of Public Security (C21605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Le Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial or personal relationships with any individuals or organizations that could inappropriately influence our work. We have no professional or personal interests, of any nature or kind, in any products, services, and/or companies that could influence the positions presented or the review process in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GD., Cheng, WC., Wang, QL. et al. A measurement device independent multi-party quantum key agreement protocol with identity authentication. Quantum Inf Process 22, 443 (2023). https://doi.org/10.1007/s11128-023-04205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04205-9

Keywords

Navigation