Skip to main content
Log in

Broadcasting of non-locality

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Bell non-locality and steering are archetypal characteristics of quantum mechanics that mark a significant departure from conventional classical notions. They basically refer to the presence of quantum correlations between separated systems which violate a non-local inequality, the violation otherwise is not possible if we restrict ourselves only to classical correlations. In view of the importance of such unique correlations, one may be interested to generate more states exhibiting non-locality starting from a few, a protocol which is termed as broadcasting. However, in the present submission, we show using universal Buzek–Hillary (BH) quantum cloning machine that, if one restricts to broadcasting through local quantum cloning, then such non-locality cannot be broadcasted. Our study is done in the purview of the Bell-CHSH inequality and the CJWR [E G Cavalcanti et al, Phys. Rev. A 80, 032112 (2009)] steering inequality. It is observed that when the number of measurement settings is greater than 6, some of the output states are steerable after the application of local optimal BH cloners. We found that, under some restrictions, if the Werner and Bell diagonal states are subjected to such procedures, then the resultant state is rendered unsteerable. We extended this study to three qubit systems and found that genuine tripartite non-locality cannot be broadcasted using universal BH local quantum cloners, when the Svetlichny’s inequality was considered. For two qubit systems, we considered \(10^5\) simulated general local unitaries over Werner and Bell-diagonal states and found that for none of these states, broadcasting on non-locality and 3-steerability is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J S Bell, Phys. Phys. Fiz. 1, 195 (1964)

    MathSciNet  Google Scholar 

  2. N Brunner et al, Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  3. A K Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. C H Bennett and G Brassard, Int. Conf. on Comp., Syst. and Sig. Process., Bangalore, India, 175 (1984)

  5. R Uola et al, Rev. Mod. Phys. 92, 015001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. E Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  7. M D Reid, Phys. Rev. A 40, 913 (1989)

    Article  ADS  Google Scholar 

  8. H M Wiseman, S J Jones and A C Doherty, Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. M D Reid et al, Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  Google Scholar 

  10. E G Cavalcanti et al, Phys. Rev. A 80, 032112 (2009)

    Article  ADS  Google Scholar 

  11. M F Pusey, Phys. Rev. A 88, 032313 (2013)

    Article  ADS  Google Scholar 

  12. C L Ren et al, Phys. Rev. A 97, 032119 (2018)

    Article  ADS  Google Scholar 

  13. S P Walborn et al, Phys. Rev. Lett. 106, 130402 (2011)

    Article  ADS  Google Scholar 

  14. J Schneeloch et al, Phys. Rev. A 87, 062103 (2013)

    Article  ADS  Google Scholar 

  15. T Pramanik, M Kaplan and A S Majumdar, Phys. Rev. A 90, 050305(R) (2014)

    Article  ADS  Google Scholar 

  16. Y N Chen et al, Phys. Rev. A 89, 032112 (2014)

    Article  ADS  Google Scholar 

  17. M Zukowski, A Dutta and Z Yin, Phys. Rev. A 91, 032107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. H Zhu, M Hayashi and L Chen, Phys. Rev. Lett. 116, 070403 (2016)

    Article  ADS  Google Scholar 

  19. W K Wootters and W H Zurek, Nature 299, 802 (1982)

  20. V. Scarani et al, Rev. Mod. Phys. 77, 1225 (2005) and references therein

    Article  ADS  Google Scholar 

  21. L M Duan and G C Guo, Phys. Rev. Lett80, 4999 (1998)

    Article  ADS  Google Scholar 

  22. L Hardy and D D Song, Phys. Lett. A 259, 331 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. V Buzek and M Hillery, Phys. Rev. Lett. 81, 5003 (1998)

    Article  ADS  Google Scholar 

  24. V Buzek and M Hillery, Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. S Adhikari, B S Choudhury and I Chakrabarty, J. Phys. A: Math. Gen. 39, 8439 (2006)

    Article  ADS  Google Scholar 

  26. N Gisin and S Massar, Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  27. N Gisin, Phys. Lett. A 242, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. M K Shukla, I Chakrabarty and S Chatterjee, Quant. Inf. Process 19, 15 (2020)

    Article  ADS  Google Scholar 

  29. H Barnum et al, Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  30. V Buzek et al, Phys. Rev. A 55, 3327 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. S Bandyopadhyay and G Kar, Phys. Rev. A 60, 3296 (1999)

    Article  ADS  Google Scholar 

  32. I Ghiu, Phys. Rev. A 67, 012323 (2003)

    Article  ADS  Google Scholar 

  33. S Chatterjee, S K Sazim and I Chakrabarty, Phys. Rev. A 93, 042309 (2016)

  34. A Jain, I Chakrabarty and S Chatterjee, Phys. Rev. A 99, 022315 (2019)

    Article  ADS  Google Scholar 

  35. R Mundra et al, Phys. Rev. A 100, 042319 (2019)

    Article  ADS  Google Scholar 

  36. U K Sharma, I Chakrabarty and M K Shukla, Phys. Rev. A 96, 052319 (2017)

    Google Scholar 

  37. J F Clauser et al, Phys. Rev. Lett. 23, 880 (1969)

    Article  Google Scholar 

  38. R F Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  39. G Svetlichny, Phys. Rev. D 35, 3066 (1987)

    Article  ADS  Google Scholar 

  40. R Horodecki, P Horodecki and M Horodecki, Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. R Horodecki, Phys. Lett. A 210, 223 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  42. A A Ajoy and P Rungta, Phys. Rev. A 81, 052334 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. A C S Costa and R M Angelo, Phys. Rev. A 93, 020103(R) (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. J Bowles et al, Phys. Rev. A 93, 022121 (2016)

    Article  ADS  Google Scholar 

  45. R Mundra et al, Pramana – J. Phys. 95, 60 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Nirman Ganguly acknowledges support from the project grant received from DST-SERB (India) under the MATRICS scheme, vide file number MTR/2022/000101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhrumil Patel.

Appendix A. Proof of Lemma 1

Appendix A. Proof of Lemma 1

Let

$$\begin{aligned}\omega _{A} = \frac{{\mathbb {I}} + \vec {x}\cdot \vec {\sigma }}{2} \in {\mathbb {C}}^{2},\end{aligned}$$

be a state of quantum system A. Also, let the blank state and the machine state be denoted as \(E_{a}\) and \(X_{x}\), respectively. Let \(U^{\mu }_{Aax}\) be a unitary operator applied on the joint system of A, a and x, and it defines the BH cloning machine with the machine parameter \(\mu \). After applying this cloning transformation to the joint system \(\omega _{\textrm{A}} \otimes E_{a} \otimes X_{x}\), we get the following output states \(\omega ^{\textrm{out}}_{\textrm{A}}\) and \(\omega ^{\textrm{out}}_{a}\):

$$\begin{aligned} \omega ^{\textrm{out}}_{\textrm{A}}&= {\text {Tr}}_{ax}\left[ U^{\mu }_{Aax} \left( \omega _{\textrm{A}} \otimes E_{a} \otimes X_{x} \right) U^{\mu \dagger }_{Aax}\right] \nonumber \\&= \frac{{\mathbb {I}} + \mu \vec {x}\cdot \vec {\sigma }}{2}, \end{aligned}$$
(A.1)
$$\begin{aligned} \omega ^{\textrm{out}}_{a}&= {\text {Tr}}_{Ax}\left[ U^{\mu }_{Aax} \left( \omega _{\textrm{A}} \otimes E_{a} \otimes X_{x} \right) U^{\mu \dagger }_{Aax}\right] \nonumber \\&= \frac{{\mathbb {I}} + \mu \vec {x}\cdot \vec {\sigma }}{2}. \end{aligned}$$
(A.2)

Both the output states are the same as we are using a symmetric cloning machine. Intuitively, when we compare these output states with the input state \(\omega \), it is very interesting to observe that the vector associated with Pauli matrices is shrunk by the factor of \(\mu \). This observation is crucial for this proof.

Now, let us expand this development to the two-qubit case. As given, Alice (A) and Bob (B) share a state \(\rho _{\textrm{AB}}\), which is a general two-qubit state as written in (1). Additionally, let \(E_{a}\) and \(E_{b}\) serve as initial blank quantum states in Alice and Bob’s lab, respectively. Let us denote the machine qubits as x and y for Alice’s and Bob’s local cloning machines, respectively. Furthermore, they apply local cloning unitaries \(U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}}\) on their respective qubits, i.e., qubits (Aax) and qubits (Bby). Here, we assume that both the machine parameters, i.e., \(\mu _{1}\) and \(\mu _{2}\), need not be the same for generalising the approach. Let \({\tilde{\rho }}_{Ab}\) and \({\tilde{\rho }}_{Ba}\) be non-local output states obtained after cloning. Here, we only show for \({\tilde{\rho }}_{Ab}\) as we are using symmetric cloners, and therefore, we have \({\tilde{\rho }}_{Ab} = {\tilde{\rho }}_{Ba}\).

$$\begin{aligned}&{\tilde{\rho }}_{Ab} = {\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}}\left( \rho _\textrm{AB}\right. \right. \nonumber \\&\qquad \left. \left. \otimes E_{a}\otimes E_{b} \otimes X_{x} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger }\right] \nonumber \\&\quad \overset{(a)}{=}\ {\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}}\left( \frac{1}{4}\Bigg [{\mathbb {I}}_A \otimes {\mathbb {I}}_B \right. \right. \nonumber \\&\qquad +\sum _{i=1}^{3}\left( x_{i}(\sigma ^{i}_{A}\otimes {\mathbb {I}}_B)+ y_{i}({\mathbb {I}}_A\otimes \sigma ^{i}_{B})\right) \nonumber \\&\qquad +\sum _{i,j=1}^{3}t_{ij}(\sigma ^{i}_{A}\otimes \sigma ^{j}_{B})\Bigg ]\nonumber \\&\qquad \left. \left. \otimes E_{a}\otimes E_{b} \otimes X_{x} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger }\right] \nonumber \\&\quad \overset{(b)}{=}\ 1/4 \Bigg ({\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}}\left( {\mathbb {I}}_A \otimes E_{a} \otimes X_{x} \right. \right. \nonumber \\&\qquad \left. \left. \otimes {\mathbb {I}}_B\otimes E_{b} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad +\sum _{i=1}^{3} x_{i} {\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}} \left( \sigma ^{i}_{A}\otimes E_{a} \otimes X_{x} \right. \right. \nonumber \\&\qquad \left. \left. \otimes {\mathbb {I}}_B \otimes E_{b} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad + \sum _{i=1}^{3} y_{i} {\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}} \left( {\mathbb {I}}_{A}\otimes E_{a} \otimes X_{x} \right. \right. \nonumber \\&\qquad \left. \left. \otimes \sigma ^{i}_B \otimes E_{b} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad +\sum _{i, j=1}^{3} t_{ij} {\text {Tr}}_{aBxy}\left[ U_{Aax}^{\mu _{1}}\otimes U_{Bby}^{\mu _{2}} \left( \sigma ^{i}_{A}\otimes E_{a} \otimes X_{x} \right. \right. \nonumber \\&\qquad \left. \left. \otimes \sigma ^{j}_B \otimes E_{b} \otimes X_{y} \right) U_{Aax}^{\mu _{1}\dagger }\otimes U_{Bby}^{\mu _{2}\dagger } \right] \Bigg )\nonumber \\&\quad \overset{(c)}{=}\ 1/4 \Bigg ({\text {Tr}}_{ax}\left[ U_{Aax}^{\mu _{1}}\left( {\mathbb {I}}_A \otimes E_{a} \otimes X_{x}\right) U_{Aax}^{\mu _{1}\dagger } \right] \nonumber \\&\qquad \otimes {\text {Tr}}_{By}\left[ U_{Bby}^{\mu _{2}}\left( {\mathbb {I}}_B \otimes E_{b} \otimes X_{y}\right) U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad +\sum _{i=1}^{3} x_{i} {\text {Tr}}_{ax}\left[ U_{Aax}^{\mu _{1}}\left( \sigma ^{i}_A \otimes E_{a} \otimes X_{x}\right) U_{Aax}^{\mu _{1}\dagger } \right] \nonumber \\&\qquad \otimes {\text {Tr}}_{By}\left[ U_{Bby}^{\mu _{2}}\left( {\mathbb {I}}_B \otimes E_{b} \otimes X_{y}\right) U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad + \sum _{i=1}^{3} y_{i} {\text {Tr}}_{ax}\left[ U_{Aax}^{\mu _{1}}\left( {\mathbb {I}}_A \otimes E_{a} \otimes X_{x}\right) U_{Aax}^{\mu _{1}\dagger } \right] \nonumber \\&\qquad \otimes {\text {Tr}}_{By}\left[ U_{Bby}^{\mu _{2}}\left( \sigma ^{i}_B \otimes E_{b} \otimes X_{y}\right) U_{Bby}^{\mu _{2}\dagger } \right] \nonumber \\&\qquad +\sum _{i, j=1}^{3} t_{ij} {\text {Tr}}_{ax}\left[ U_{Aax}^{\mu _{1}}\left( \sigma ^{i}_A \otimes E_{a} \otimes X_{x}\right) U_{Aax}^{\mu _{1}\dagger } \right] \nonumber \\&\qquad \otimes {\text {Tr}}_{By}\left[ U_{Bby}^{\mu _{2}}\left( \sigma ^{j}_B \otimes E_{b} \otimes X_{y}\right) U_{Bby}^{\mu _{2}\dagger } \right] \Bigg )\nonumber \\&\overset{(d)}{=}\ 1/4\left( {\mathbb {I}}_{A} \otimes {\mathbb {I}}_{b} + \sum _{i=1}^{3} x_{i} \mu _{1} (\sigma ^{i}_{A} \otimes {\mathbb {I}}_{b})\right. \nonumber \\&\qquad \left. + \sum _{i=1}^{3} y_{i} \mu _{2} ({\mathbb {I}}_{A} \otimes \sigma ^{i}_{b}) + \sum _{i, j=1}^{3} t_{ij} \mu _{1} \mu _{2} (\sigma ^{i}_{A} \otimes \sigma ^{j}_{b}) \right) \nonumber \\&= \{\mu _{1} \vec {x}, \mu _{2} \vec {y}, \mu _{1} \mu _{2}{\mathbb {T}} \}. \end{aligned}$$
(A.3)

The equality (a) follows from the definition of a general two-qubit mixed state, the equalities (b) and (c) follow by expanding the expression and rearranging it for simplicity and the equality (d) follows from (A.1) and (A.2).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D., Roy, A., Chakrabarty, I. et al. Broadcasting of non-locality. Pramana - J Phys 98, 59 (2024). https://doi.org/10.1007/s12043-024-02726-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02726-1

Keywords

PACS

Navigation