Skip to main content
Log in

Deterministic remote preparation via the Brown state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  4. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  5. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)

    Article  ADS  MATH  Google Scholar 

  6. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)

    Article  ADS  Google Scholar 

  7. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two- and three-qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the Brown state with no restriction. Int. J. Theor. Phys. 55, 2643 (2016)

    Article  MATH  Google Scholar 

  10. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719 (2007)

    Article  ADS  Google Scholar 

  12. Chen, Q.Q., Xia, Y., Nguyen, B.A.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617 (2011)

    Article  ADS  Google Scholar 

  13. Su, Y., Chen, X.B., Yang, Y.X.: \(N\)-to-\(M\) joint remote state preparation of 2-level state. Int. J. Quantum Inf. 10, 1250006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two- qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Ji, X.: Deterministic joint remote state preparation of arbitrary two- and three-qubit states. Chin. Phys. B 22, 020306 (2013)

    Article  ADS  Google Scholar 

  17. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44, 115506 (2011)

    Article  ADS  Google Scholar 

  19. Zhang, Y.L., Zhou, Q.P., Kang, G.D., Zhou, F., Wang, X.B.: Remote state preparation in non-Markovian environment. Int. J. Quantum Inf. 10, 1250030 (2012)

    Article  MATH  Google Scholar 

  20. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)

    Article  MATH  Google Scholar 

  21. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15, 2155 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  24. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  25. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  26. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640 (2010)

    Article  ADS  Google Scholar 

  27. Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284, 4088 (2011)

    Article  ADS  Google Scholar 

  28. Ma, S.Y., Luo, M.X.: Efficient remote preparation of arbitrary two- and three-qubit states via the \(\chi \) state. Chin. Phys. B 23, 090308 (2014)

    Article  ADS  Google Scholar 

  29. Zhan, Y.B.: Deterministic remote preparation of arbitrary two- and three-qubit states. EPL 98, 40005 (2012)

    Article  ADS  Google Scholar 

  30. Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  31. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.H., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  32. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  33. Barreiro, J.T., Wei, T.C.: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  34. Erhard, M., Qassim, H., Mand, H., Karimi, E., Boyd, R.W.: Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation. Phys. Rev. A 92, 022321 (2015)

    Article  ADS  Google Scholar 

  35. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

  37. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  40. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)

    Article  ADS  Google Scholar 

  41. Nie, Y., Li, Y., Liu, J., Sang, M.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11, 563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liang, X.T.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61201253, 61373131, 61572246), PAPD and CICAEET funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Ya Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, SY., Gao, C., Zhang, P. et al. Deterministic remote preparation via the Brown state. Quantum Inf Process 16, 93 (2017). https://doi.org/10.1007/s11128-017-1542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1542-x

Keywords

Navigation