Skip to main content
Log in

The dynamics of two entangled qubits exposed to classical noise: role of spatial and temporal noise correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the decay of two-qubit entanglement caused by the influence of classical noise. We consider the whole spectrum of cases ranging from independent to fully correlated noise affecting each qubit. We take into account different spatial symmetries of noises, and the regimes of noise autocorrelation time. The latter can be either much shorter than the characteristic qubit decoherence time (Markovian decoherence), or much longer (approaching the quasi-static bath limit). We express the entanglement of two-qubit states in terms of expectation values of spherical tensor operators which allows for transparent insight into the role of the symmetry of both the two-qubit state and the noise for entanglement dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The splitting renormalization is given by \(\varDelta \varOmega t = \int _0^t \hbox {d}t' \int _0^{t'} \hbox {d}t''\kappa (t'-t'')\sin \left[ \varOmega (t'-t'')\right] .\)

References

  1. Steane, A.: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  4. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  5. Shimshoni, E., Gefen, Y.: Onset of dissipation in zener dynamics: relaxation versus dephasing. Ann. Phys. (NY) 210, 16 (1991)

    Article  ADS  Google Scholar 

  6. Shimshoni, E., Stern, A.: Dephasing of interference in Landau-Zener transitions. Phys. Rev. B 47, 9523–9536 (1993)

    Article  ADS  Google Scholar 

  7. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement (2014). arXiv:1402.3713

  9. Schoelkopf, R.J., Clerk, A.A., Girvin, S.M., Lehnert, K.W., Devoret, M.H.: Qubits as spectrometers of quantum noise. In: Nazarov, Y.V. (ed.) Quantum Noise in Mesoscopic Physics, pp. 175–203. Kluwer, Dordrecht (2003). (cond-mat/0210247)

    Chapter  Google Scholar 

  10. Paladino, E., Galperin, Y.M., Falci, G., Altshuler, B.L.: \(1/f\) noise: implications for solid-state quantum information. Rev. Mod. Phys. 86, 361 (2014)

    Article  ADS  Google Scholar 

  11. Fischer, J., Trif, M., Coish, W.A., Loss, D.: Spin interactions, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009)

    Article  ADS  Google Scholar 

  12. Cywiński, Ł.: Dephasing of electron spin qubits due to their interaction with nuclei in quantum dots. Acta Phys. Pol. A 119, 576 (2011)

    Google Scholar 

  13. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  14. Schindler, P., Nigg, D., Monz, T., Barreiro, J.T., Martinez, E., Wang, S.X., Quint, S., Brandl, M.F., Nebendahl, V., Roos, C.F., Chwalla, M., Hennrich, M., Blatt, R.: A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013)

    Article  ADS  Google Scholar 

  15. Makhlin, Y., Schön, G., Shnirman, A.: Dephasing of solid-state qubits at optimal points. Chem. Phys. 296, 315 (2004)

    Article  ADS  Google Scholar 

  16. Pokrovsky, V.L., Sun, D.: Fast quantum noise in the Landau-Zener transition. Phys. Rev. B 76, 024310 (2007)

    Article  ADS  Google Scholar 

  17. Duan, L.-M., Guo, G.-C.: Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737 (1998)

    Article  ADS  Google Scholar 

  18. Burkard, G.: Non-Markovian qubit dynamics in the presence of \(1/f\) noise. Phys. Rev. B 79, 125317 (2009)

    Article  ADS  Google Scholar 

  19. Yu, T., Eberly, J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)

    Article  ADS  Google Scholar 

  20. Ting, Y., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  21. Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)

    Article  ADS  Google Scholar 

  22. Ting, Y., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676 (2010)

    Article  ADS  Google Scholar 

  23. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  24. Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process. 9, 727 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bellomo, B., Compagno, G., D’Arrigo, A., Falci, G., Lo Franco, R., Paladino, E.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 81, 062309 (2010)

    Article  ADS  Google Scholar 

  26. Ban, M.: Entanglement, phase correlation and dephasing of two-qubit states. Opt. Commun. 281, 3943 (2008)

    Article  ADS  Google Scholar 

  27. Corn, B., Ting, Y.: Modulated entanglement evolution via correlated noises. Quantum Inf. Process. 8, 565 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. De, A., Lang, A., Zhou, D., Joynt, R.: Suppression of decoherence and disentanglement by the exchange interaction. Phys. Rev. A 83, 042331 (2011)

    Article  ADS  Google Scholar 

  29. Brox, H., Bergli, J., Galperin, Y.M.: Bloch-sphere approach to correlated noise in coupled qubits. J. Phys. A Math. Theor. 45, 455302 (2012)

    Article  MathSciNet  Google Scholar 

  30. Budimir, J., Skinner, J.L.: On the relationship between \(t_{1}\) and \(t_{2}\) for stochastic relaxation models. J. Stat. Phys. 49, 1029 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  31. Aihara, M., Sevian, H.M., Skinner, J.L.: Non-markovian relaxation of a spin-\(\frac{1}{2}\) particle in a fluctuating transverse field: cumulant expansion and stochastic simulation results. Phys. Rev. A 41, 6596 (1990)

    Article  ADS  Google Scholar 

  32. Szańkowski, P., Trippenbach, M., Band, Y.B.: Spin decoherence due to fluctuating fields. Phys. Rev. E 87, 052112 (2013)

    Article  ADS  Google Scholar 

  33. de Lange, G., Wang, Z.H., Ristè, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010)

    Article  ADS  Google Scholar 

  34. Fox, R.F.: Application of cumulant techniques to multiplicative stochastic processes. J. Math. Phys. 15, 1479 (1974)

    Article  ADS  Google Scholar 

  35. Falci, G., D’Arrigo, A., Mastellone, A., Paladino, E.: Initial decoherence in solid state qubits. Phys. Rev. Lett. 94, 167002 (2005)

    Article  ADS  Google Scholar 

  36. Taylor, J.M., Lukin, M.D.: Dephasing of quantum bits by a quasi-static mesoscopic environment. Quantum Inf. Process. 5, 503 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Makhlin, Y., Shnirman, A.: Dephasing of solid-state qubits at optimal points. Phys. Rev. Lett. 92, 178301 (2004)

    Article  ADS  Google Scholar 

  38. Cywiński, Ł.: Dynamical-decoupling noise spectroscopy at an optimal working point of a qubit. Phys. Rev. A 90, 042307 (2014)

    Article  ADS  Google Scholar 

  39. Życzkowski, K., Horodecki, P., Horodecki, M., Horodecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 65, 012101 (2001)

    Article  Google Scholar 

  40. Ting, Y., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  Google Scholar 

  41. Ting, Y., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  43. Ashm, R.B.: Basic Probability Theory. Dover, New York (2008)

    Google Scholar 

  44. Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley, London (1994)

    Google Scholar 

  45. Ting, Y., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “x” states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  Google Scholar 

  46. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838–1843 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  47. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  48. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  49. Szańkowski, P., Trippenbach, M., Chwedeńczuk, J.: Parameter estimation in memory-assisted noisy quantum interferometry. Phys. Rev. A 90(6), 063619 (2014)

    Article  ADS  Google Scholar 

  50. Feynman, R.P.: An operator calculus having applications in quantum electrodynamics. Phys. Rev. 84, 108 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Kubo, R.: Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Van Kampen, N.G.: A cumulant expansion for stochastic linear differential equations. I. Physica 74, 215 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  53. Van Kampen, N.G.: A cumulant expansion for stochastic linear differential equations. II. Physica 74, 239 (1974)

    Article  ADS  Google Scholar 

  54. Fox, R.F.: Critique of the generalized cumulant expansion method. J. Math. Phys. 17, 1148 (1976)

    Article  ADS  Google Scholar 

  55. Zhou, D., Chern, G.-W., Fei, J., Joynt, R.: Topology of entanglement evolution of two qubits. Int. J. Mod. Phys. B 26, 1250054 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  56. Blum, K.: Density Matrix Theory and Applications. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  57. Wang, M.C., Uhlenbeck, G.E.: On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323 (1945)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. Lidar, D.A.: Review of decoherence free subspaces, noiseless subsystems, and dynamical decoupling. Adv. Chem. Phys. 154, 295–354 (2014)

    Google Scholar 

  59. Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence of a qubit by a non-Gaussian noise at an arbitrary working point. Phys. Rev. B 74, 024509 (2006)

    Article  ADS  Google Scholar 

  60. Benedetti, C., Paris, M.G.A.: Effective dephasing for a qubit interacting with a transverse classical field. Int. J. Quantum Inf. 12, 1461004 (2014)

    Article  MathSciNet  Google Scholar 

  61. Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72, 052113 (2005)

    Article  ADS  Google Scholar 

  62. Dobrovitski, V.V., Feiguin, A.E., Hanson, R., Awschalom, D.D.: Decay of rabi oscillations by dipolar-coupled dynamical spin environments. Phys. Rev. Lett. 102, 237601 (2009)

    Article  ADS  Google Scholar 

  63. Bragar, I., Cywiński, Ł.: Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots. Phys. Rev. B 91, 155310 (2015)

    Article  ADS  Google Scholar 

  64. Shulman, M.D., Harvey, S.P., Nichol, J.M., Bartlett, S.D., Doherty, A.C., Umansky, V., Yacoby, A.: Suppressing qubit dephasing using real-time hamiltonian estimation. Nat. Commun. 5, 5156 (2014)

    Article  ADS  Google Scholar 

  65. Hung, J.-T., Cywiński, Ł., Xuedong, H., Das Sarma, S.: Hyperfine interaction induced dephasing of coupled spin qubits in semiconductor double quantum dots. Phys. Rev. B 88, 085314 (2013)

    Article  ADS  Google Scholar 

  66. DArrigo, A., Mastellone, A., Paladino, E., Falci, G.: Effects of low-frequency noise cross-correlations in coupled superconducting qubits. New J. Phys. 10, 115006 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Israel Science Foundation (Grant No. 295/2011). P. Sz. acknowledges the Foundation for Polish Science International Ph.D. Projects Program co-financed by the EU European Regional Development Fund. ŁC was supported and P. Sz was partially supported by funds of Polish National Science Center (NCN), Grant No. DEC-2012/07/B/ST3/03616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szańkowski.

Appendices

Appendix 1: Concurrence of the Bell States

The density matrices of the \(X_{\mathrm {corr}}\)-states, written in standard two-qubit basis \(\{ \left| \uparrow \downarrow \right\rangle ,\left| \downarrow \uparrow \right\rangle ,\left| \uparrow \uparrow \right\rangle ,\left| \downarrow \downarrow \right\rangle \}\), have a form

$$\begin{aligned} \varrho = \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a &{} 0 &{} 0 &{} w\\ 0 &{} b &{} z &{} 0\\ 0 &{} z^*&{}b &{}0\\ w^*&{}0&{}0&{}a\\ \end{array}\right) , \end{aligned}$$
(91)

where the condition \(2a+2b=1\) insures that the trace equals unity. Matrices of the form (91) are time reversal invariant, hence the concurrence is easily evaluated because it can be expressed in term of eigenvalues of \(\varrho \) itself. These eigenvalues can be determined analytically, so the concurrence is given by [45]

$$\begin{aligned} {\mathcal {C}}(\varrho )= 2\,\text {max}\left\{ 0, |z|-a, |w|-b \right\} . \end{aligned}$$
(92)

Straightforward calculations show that the matrix elements \(a,\,b,\,w\) and z can be written in terms of the expectation values of products of the spherical tensor operators,

$$\begin{aligned} z{}&=-2\left\langle T^{(1)}_{11}\otimes T^{(2)}_{1{-1}}\right\rangle _{\varrho } =-2\left\langle T^{(1)}_{1-1}\otimes T^{(2)}_{11}\right\rangle ^*_{\varrho }, \end{aligned}$$
(93)
$$\begin{aligned} w{}&=2\left\langle T^{(1)}_{11}\otimes T^{(2)}_{11}\right\rangle _{\varrho } =2\left\langle T^{(1)}_{1-1}\otimes T^{(2)}_{1-1}\right\rangle ^*_{\varrho }, \end{aligned}$$
(94)
$$\begin{aligned} a{}&= \frac{1}{4} +\left\langle T^{(1)}_{10}\otimes T^{(2)}_{10}\right\rangle _{\varrho }, \end{aligned}$$
(95)
$$\begin{aligned} b{}&= \frac{1}{4} -\left\langle T^{(1)}_{10}\otimes T^{(2)}_{10}\right\rangle _{\varrho }. \end{aligned}$$
(96)

Thus we obtain formula (27).

Appendix 2: Diagonalization of the evolution superoperator for the case of transverse noise

The evolution superoperator for transverse white noise is given by Eq. (71):

$$\begin{aligned} {\mathcal {U}}_{\mathrm {tr}}=\hbox {e}^{i\varOmega t{\mathcal {J}}_z}\hbox {e}^{-\left[ (1-\gamma )\left( \varvec{{\mathcal {J}}}_1^{2}+\varvec{{\mathcal {J}}}_2^{2}\right) -{\mathcal {J}}_z^2\right] \frac{t}{T}}\hbox {e}^{-\frac{t}{T}{\mathcal {L}}}, \end{aligned}$$
(97)

where we introduced the superoperator \({\mathcal {L}}\) defined as

$$\begin{aligned} {\mathcal {L}} = \gamma \varvec{{\mathcal {J}}}^2 +(1-\gamma )\left( {\mathcal {J}}_z^{(1)}{\mathcal {J}}_z^{(2)} +{\mathcal {J}}_z^{(2)}{\mathcal {J}}_z^{(1)}\right) . \end{aligned}$$
(98)

Our task is to diagonalize the matrix representation of this superoperator. The matrix elements in the basis of spherical tensor products are

$$\begin{aligned} ({\mathcal {L}})_{m_1m_2,m_1'm_2'}=\frac{\left( T^{(1)}_{1 m_1}\!\!\otimes \! T^{(2)}_{1 m_2}\big | {\mathcal {L}}\left( T^{(1)}_{1 m_1'}\!\!\otimes \! T^{(2)}_{1 m_2'}\right) \right) }{\big |\big |T^{(1)}_{1 m_1} \!\otimes \! T^{(2)}_{1 m_2}\big |\big |\,\big |\big |T^{(1)}_{1 m_1'}\!\!\otimes \! T^{(2)}_{1 m_2'}\big |\big |}, \end{aligned}$$
(99)

where \((A|B)=\mathrm {Tr}( A^\dagger B)\) and \(||A||=\sqrt{(A|A)}\). The explicit form of the matrix is given by

(100)

where blank spaces are zero. The matrix has a block-diagonal form and each block can be diagonalized analytically. In particular, spherical tensor products \(T^{(1)}_{1 \pm 1}\otimes T^{(2)}_{1 \pm 1} = T_{2\pm 2(11)}\) are already eigenoperators of \({\mathcal {L}}\) and the triple of unpolarized products \(\{ T^{(1)}_{1 0}~{\!\!\otimes \!}~ T^{(2)}_{1 0},T^{(1)}_{1 1}~{\!\!\otimes \!}~T^{(2)}_{1 {-1}},T^{(1)}_{1 {-1}}~{\!\!\otimes \!}~ T^{(2)}_{1 1} \}\) form one of the blocks. Because the \(X_{\mathrm {corr}}\)-states (including the Bell states) are spanned by these five operators, it follows that any state which belongs to this class remains in it for all time when it is evolved with \({\mathcal {U}}_{\mathrm {tr}}\).

Below we list the eigenoperators and the corresponding eigenvalues of \({\mathcal {L}}\):

$$\begin{aligned} 2(1+2\gamma ):{}&\; T^{(1)}_{1 \pm 1}\!\!\otimes \! T^{(2)}_{1 \pm 1} \end{aligned}$$
(101)
$$\begin{aligned} -2(1-2\gamma ):{}&\; -T^{(1)}_{1 1}\!\!\otimes \! T^{(2)}_{1 -1}+T^{(1)}_{1 -1}\!\!\otimes \! T^{(2)}_{1 1}, \end{aligned}$$
(102)
$$\begin{aligned} -1+4\gamma -3\eta :{}&\;T^{(1)}_{1 1}\!\!\otimes \! T^{(2)}_{1 -1}+T^{(1)}_{1 -1}\!\!\otimes \! T^{(2)}_{1 1} +\frac{1-3\eta }{2\gamma }T^{(1)}_{1 0}\!\!\otimes \! T^{(2)}_{1 0}, \end{aligned}$$
(103)
$$\begin{aligned} -1+4\gamma +3\eta :{}&\;T^{(1)}_{1 1}\!\!\otimes \! T^{(2)}_{1 -1}+T^{(1)}_{1 -1}\!\!\otimes \! T^{(2)}_{1 1} +\frac{1+3\eta }{2\gamma }T^{(1)}_{1 0}\!\!\otimes \! T^{(2)}_{1 0}, \end{aligned}$$
(104)
$$\begin{aligned} 6\gamma :{}&\; T^{(1)}_{1 0}\!\!\otimes \! T^{(2)}_{1 \pm 1}+T^{(1)}_{1 \pm 1}\!\!\otimes \! T^{(2)}_{1 0}, \end{aligned}$$
(105)
$$\begin{aligned} 2\gamma :{}&\; T^{(1)}_{1 0}\!\!\otimes \! T^{(2)}_{1 \pm 1}-T^{(1)}_{1 \pm 1}\!\!\otimes \! T^{(2)}_{1 0}, \end{aligned}$$
(106)

where \(\eta = \frac{1}{3}\sqrt{1+8\gamma ^2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szańkowski, P., Trippenbach, M., Cywiński, Ł. et al. The dynamics of two entangled qubits exposed to classical noise: role of spatial and temporal noise correlations. Quantum Inf Process 14, 3367–3397 (2015). https://doi.org/10.1007/s11128-015-1044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1044-7

Keywords

Navigation