Skip to main content
Log in

Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage exceeds the rate of D1 protein repair. Here, genetically engineered codA-tomato with the capability to accumulate glycinebetaine (GB) was established. After photoinhibition treatment at high temperature, the transgenic lines displayed more thermotolerance to heat-induced photoinhibition than the control line. GB maintained high expression of LeFtsHs and LeDegs and degraded the damaged D1 protein in time. Meanwhile, the increased transcription of synthesis-related genes accelerated the de novo synthesis of D1 protein. Low ROS accumulation reduced the inhibition of D1 protein translation in the transgenic plants, thereby reducing protein damage. The increased D1 protein content and decreased phosphorylated D1 protein (pD1) in the transgenic plants compared with control plants imply that GB may minimize photodamage and maximize D1 protein stability. As D1 protein exhibits a high turnover, PSII maybe repaired rapidly and efficiently in transgenic plants under photoinhibition treatment at high temperature, with the resultant mitigation of photoinhibition of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahammed GJ, Li X, Yang YX, Liu CC, Zhou GZ, Wang HJ, Cheng Y (2019) Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2–mediated stomatal closure. Environ Exp Bot 171:103960

    Article  Google Scholar 

  • Ahammed GJ, Li X, Wan HJ, Zhou GZ, Cheng Y (2020) SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci Hortic 270:109444

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 303:161–175

    Article  CAS  Google Scholar 

  • Ahmad P, Latef AA, Hashem A, Allah EF, Gucel S, Tran LP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in Chickpea. Front Plant Sci 7:347–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Tripathi DK, Deshmukh R, Singh VP, Corpas FJ (2019) Revisiting the role of ROS and RNS in plants under changing environment. Environ Exp Bot 161:1–3

    Article  CAS  Google Scholar 

  • Alia HH, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P (2019) Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front in Plant Sci 10:230

    Article  Google Scholar 

  • Aro EM, Kettunen R, Tyystjrvi E (1992) ATP and light regulate D1 protein modification and degradation Role of D1* in photoinhibition. FEBS Lett 297:29–33

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Aryal BP, Jeong J, Rao VA (2015) Abstract 1825: carbonylation and degradation of cardiac myosin binding protein C serves as an indicator of doxorubicin-induced cardiotoxicity. Cancer Res 75:1825–1825

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66

    Article  CAS  PubMed  Google Scholar 

  • Barta C, Dunkle AM, Wachter RM, Salvucci ME (2010) Structural changes associated with the acute thermal instability of Rubisco activase. Arch Biochem Biophys 499:17–25

    Article  CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279:7566–7575

    Article  CAS  PubMed  Google Scholar 

  • Basha E, Jones C, Wysocki V, Vierling E (2010) Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 285:11489–11497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Su X, Pan X, Liu Z, Chang W, Li M (2018) Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochim Biophys Acta 1859:633–644

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Chen LB, Jia HY, Tian Q, Du LB, Gao YL, Miao XX, Liu Y (2012) Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light. Photosynth Res 112:141–148

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang CM, Su YQ, Ma J, Zhang ZW, Yuan M, Zhang HY, Yuan S (2017) Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ Exp Bot 135:45–55

    Article  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Xv K, Meng QW, Li G, Yang XH (2015) Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ 38:61–72

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SK, Basu S, Kumar S, Kumari S, Kumar A, Jha S, Mishra JS, Bhatt BP, Kumar G (2019) Enhanced antioxidant enzyme activities in developing anther contributes to heat stress alleviation and sustains grain yield in wheat. Funct Plant Biol 46:1090–1102

    Article  CAS  PubMed  Google Scholar 

  • Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620

    Article  CAS  PubMed  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fagerlund RD, Forsman JA, Biswas S, Vass I, Davies FK, Summerfield TC, Eaton-Rye JJ (2020) Stabilization of Photosystem II by the PsbT protein impacts photodamage, repair and biogenesis. Biochim Biophys Acta Bioenerg 1861:148234

    Article  CAS  PubMed  Google Scholar 

  • Fristedt R, Willig A, Granath P, Crèvecoeur M, Rochaix JD, Vener AV (2009) Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. Plant Cell 21:3950–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YB, Zheng WW, Zhang C, Zhang LL, Xu K (2019) High temperature and high light intensity induced photoinhibition of bayberry (Myricarubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Sci Hortic 248:132–137

    Article  CAS  Google Scholar 

  • Gerganova MT, Faik AK, Velitchkova MY (2019) Acquired tolerance of the photosynthetic apparatus to photoinhibition as a result of growing Solanumlycopersicum at moderately higher temperature and light intensity. Funct Plant Biol 46:555–566

    Article  CAS  PubMed  Google Scholar 

  • Gerotto C, Trotta A, Bajwa AA, Mancini I, Morosinotto T, Aro EM (2019) Thylakoid protein phosphorylation dynamics in a moss mutant lacking serine/threonine protein kinase STN8. Plant Physiol 180:1582–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González BE, Barbato R, Aro EM (1999) Role of phosphorylation in the repair cycle and oligomeric structure of photosystem II. Planta 208:196–204

    Article  Google Scholar 

  • Huang S, Zuo T, Ni WZ (2020) Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. Planta 251:36

    Article  CAS  PubMed  Google Scholar 

  • Jajoo A, Szabó M, Zsiros O, Garab G (2012) Low pH induced structural reorganization in thylakoid membranes. Biochim Biophys Acta 1817:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Jimbo H, Yutthanasirikul R, Nagano T, Hisabori T, Hihara Y, Nishiyama Y (2018) Oxidation of translation factor EF-Tu inhibits the repair of photosystem II. Plant Physiol 176:2691–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimbo H, Izuhara T, Hihara Y, Hisabori T, Nishiyama Y (2019) Light-inducible expression of translation factor EF-Tu during acclimation to strong light enhances the repair of photosystem II. Proc Natl Acad Sci USA 116:21268–21273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Fu M, Duan Z, Duan S, Li M, Dong X, Liu B, Feng D, Wang J, Peng L, Wang HB (2018) LOW PHOTOSYNTHETIC EFFICIENCY 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. Proc Natl Acad Sci USA 115:E6075–E6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospíšil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. Proc Natl Acad Sci USA 114:2988–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapri-Pardes E, Naveh L, Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of PSII from photoinhibition in Arabidopsis. Plant Cell 19:1039–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Sakamoto W (2014) Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. Plant J 79:312–321

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Miura E, Ido K, Sakamoto W (2009) The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol 151:1790–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Ozawa S, Takahashi Y, Sakamoto W (2015) D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. Photosynth Res 126:409–416

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Hyodo K, Sakamoto W (2018) The photosystem II repair cycle requires FtsH turnover through the EngA GTPase. Plant Physiol 178:596–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Sirhindi H, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassicajuncea. Sci Rep 8:8735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirchhoff H (2013) Structural constraints for protein repair in plant photosynthetic membranes. Plant Signal Behav 8:e23634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koivuniemi A, Aro EM, Andersson B (1995) Degradation of the D1- and D2- proteins of photosystem II in higher plants is regulated by reversible phosphorylation. Biochemistry 34:16022–16029

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 65:936–947

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Motohashi K, Morota T, Oshita M, Hisabori T, Hayashi H, Nishiyama Y (2009) Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 284:18685–18691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M, Nakayama Y, Yoshida M, Ohira S, Morita N, Velitchkova M, Enami I, Yamamoto Y (2007) Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta 1767:838–846

    Article  CAS  PubMed  Google Scholar 

  • Kong FY, Deng Y, Zhou B, Wang GD, Wang Y, Meng QW (2014) A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. J Exp Bot 65:143–158

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NP (2015) Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. Photosynth Res 126:221–235

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SF, Li F, Wang JW, Zhang W, Meng QW, Chen THH, Murata N, Yang XH (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34:1931–1943

    Article  CAS  PubMed  Google Scholar 

  • Li MF, Li ZM, Li SF, Guo SJ, Meng QW, Li G, Yang XH (2014) Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep 32:42–51

    Article  CAS  Google Scholar 

  • Li DX, Zhang TP, Wang MW, Liu Y, Brestic M, Chen TH, Yang XH (2018) Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato. Front Plant Sci 9:1995

    Article  PubMed  Google Scholar 

  • Liu Y, Wang L, Jiang SS, Pan JW, Cai GH, Li DQ (2014) Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiol Biochem 84:22–31

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Song QP, Li DX, Yang XH, Li DQ (2017) Multifunctional roles of plant dehydrins in response to environmental stresses. Front Plant Sci 8:1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lu Y, Hua W, Last RL (2019) A new light on Photosystem II maintenance in oxygenic photosynthesis. Front Plant Sci 10:975

    Article  PubMed  PubMed Central  Google Scholar 

  • Löw D, Brändle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    Article  PubMed  Google Scholar 

  • Lu Y (2016) Identification and roles of photosystem II assembly, stability, and repair factors in Arabidopsis. Front Plant Sci 7:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Masood A, Per TS, Asgher M, Fatma M, Khan MIR, Rasheed F, Hussain SJ, Khan NA (2016) Glycine betaine: role in shifting plants toward adaptation under extreme environments. Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 69–82

    Google Scholar 

  • Mccue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817:247–257

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Nishiyama Y (2018) ATP is a driving force in the repair of photosystem II during photoinhibition. Plant Cell Environ 41:285–299

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Kojima K, Hisabori T, Hayashi H, MoritaEH KT, Miyagi T, Ueda T, Nishiyama Y (2012) Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli. J Biol Chem 287:28697–28704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nath K, Poudyal RS, Eom JS, Park YS, Zulfugarov IS, Mishra SR, Tovuu A, Ryoo N, Yoon HS, Nam HG, An G, Jeon JS, Lee CH (2013) Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa). Plant J 76:675–686

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biot 98:8777–8796

    Article  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141:758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EJ, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Jeknić Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi P, Pribil M, Wunder T, Leister D (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807:887–896

    Article  CAS  PubMed  Google Scholar 

  • Poudyal RS, Nath K, Zulfugarov IS, Lee CH (2016) Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination. J Photochem Photobiol B 162:240–247

    Article  CAS  PubMed  Google Scholar 

  • Poudyal D, Rosenqvist E, Ottosen CO (2019) Phenotyping from lab to field - tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field. Funct Plant Biol 46:44–55

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917

    Article  Google Scholar 

  • Prasad PVV, Vu JCV, Boote KJ, Allen LH (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769

    Article  CAS  PubMed  Google Scholar 

  • Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin alleviates high temperature-induced pollen abortion in Solanumlycopersicum. Molecules 23:386

    Article  PubMed Central  CAS  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    Article  CAS  PubMed  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2020) Penconazole and calcium ameliorate drought stress in canola by upregulating the antioxidative enzymes. Funct Plant Biol 47:825–839

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rintamäki E, Kettunen R, Aro EM (1996) Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. J Biol Chem 271:14870–14875

    Article  PubMed  Google Scholar 

  • Rochaix JD (2011) Assembly of the photosynthetic apparatus. Plant Physiol 155:1493–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15:2843–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasi S, Venkatesh J, Daneshi RF, Gururani MA (2018) Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants 7:100

    Article  CAS  PubMed Central  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot 98:565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh-Rawal P, Zsiros O, Bharti S, Garab G, Jajoo A (2011) Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. J Bioenerg Biomembr 43:195–202

    Article  CAS  PubMed  Google Scholar 

  • Storey R, Ahmad N, Jones RGW (1977) Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia 27:319–332

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M, Tibiletti T, Takachi I, Hara Y, Kanawaku S, Sellés J, Boussac A (2018) Probing the role of valine 185 of the D1 protein in the photosystem II oxygen evolution. Biochim Biophys Acta Bioenerg 1859:1259–1273

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L (2007) Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19:1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of photosystem II damage. Plant Physiol 153:988–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theis J, Schroda M (2016) Revisiting the photosystem II repair cycle. Plant Signal Behav 11:e1218587

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Nurmi M, Kangasjärvi S, Aro EM (2008) Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 1777:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Wei DD, Zhang W, Wang CC, Meng QW, Li G, Chen TH, Yang XH (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  CAS  PubMed  Google Scholar 

  • Weisz DA, Johnson VM, Niedzwiedzki DM, Shinn MK, Liu H, Klitzke CF, Gross ML, Blankenship RE, Lohman TM, Pakrasi HB (2019) A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc Natl Acad Sci USA 116:21907–21913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang XH, Liang Z, Lu CM (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plant. Planta 225:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka-Nishimura M (2016) Close relationships between the PSII repair cycle and thylakoid membrane dynamics. Plant Cell Physiol 57:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Zhang TP, Liang JN, Wang MW, Li DX, Liu Y, Chen TH, Yang XH (2019) Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. Plant Sci 280:355–366

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Bizzozero OA (2009) Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion. Free Radic Res 44:258–266

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (Grant Nos. 31870216, 31470341), the research in Prof. Chen’s laboratory was supported by the Oregon Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Contributions

XY and TC designed the experiments. DL performed the experiments with the help of MW and TZ Other authors assisted in experiments and discussed the results. DL and XY wrote the manuscript. MB and YL gave positive suggestion about this article. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xinghong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, M., Zhang, T. et al. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. Photosynth Res 147, 301–315 (2021). https://doi.org/10.1007/s11120-020-00810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00810-2

Keywords

Navigation