Skip to main content
Log in

Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477–7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629–8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5′end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali S, Xianyin Z, Xue Q, Hassan MJ, Qian H (2007) Investigations for improved genetic transformation mediated by Agrobacterium tumefaciens in two rice cultivars. Biotechnol 6:138–147

    Article  CAS  Google Scholar 

  • Allnutt FCT, Kyle DJ, Grossman AR, Apt KE (2000) Methods and tools for transformation of eukaryotic algae. United States of America, Patent Number, p 6027900

  • Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 429–538

    Google Scholar 

  • Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46(1):36–44

    Article  CAS  Google Scholar 

  • Bai LL, Yin WB, Chen YH, Niu LL, Sun YR, Zhao SM, Yang FQ, Wang RRC, Wu Q, Zhang XQ, Hu ZM (2013) A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS ONE 8(1):e54966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941

    Article  CAS  PubMed  Google Scholar 

  • Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS (2017) The algal revolution. Trends Plant Sci 22(8):726–738

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902

    Article  CAS  Google Scholar 

  • Cadoret JP, Garnier M, Jean BS (2012) Microalgae, functional genomics and biotechnology. Adv Bot Res 64:285–341

    Article  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green algae, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z, Yang S, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167(3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Mackey K (1995) Short technical report. Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques 19(6):942–945

    CAS  PubMed  Google Scholar 

  • Den Dulk-Ras A, Hooykaas PJJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickoloff JA (ed) Plant cell electroporation and electrofusion protocols (Methods in Molecular Biology). Humana Press, Totowa, pp 63–73

    Chapter  Google Scholar 

  • Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangl D, Zedler JAZ, Rajakumar PD, Martinez EMR, Riseley A, Włodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C (2015) Biotechnological exploitation of microalgae. J Exp Bot 66:6975–6990

    Article  CAS  PubMed  Google Scholar 

  • García JL, Vicente M, Galan B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10(5):1017–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘Gene-Jockeying’ tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  CAS  PubMed  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology—from genetics to synthetic biology. Biotechnol Adv 33:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wu Y, Li W, Gao H (2006) Factors affecting Agrobacterium mediated genetic transformation of Lycium barbarum L. Vitro Cell Dev Biol Plant 42:461–466

    Article  CAS  Google Scholar 

  • Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O (2017) Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 249:10–15

    Article  CAS  PubMed  Google Scholar 

  • Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82(3):393–412

    Article  CAS  PubMed  Google Scholar 

  • Karami O (2008) Factors Affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J 2(2):127–137

    Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45:642–649

    Article  CAS  PubMed  Google Scholar 

  • Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P (2017) Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew Sust Energ Rev 72:1083–1093

    Article  CAS  Google Scholar 

  • Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R (2016) Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid. J Food Sci Technol 53(5):2270–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Kumar S, Raja SK, Sharmab AK, Varmac HN (2012) Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci Hortic 134:40–45

    Article  CAS  Google Scholar 

  • Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León R, Fernandez E (2007) Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv Exp Med Biol 616:1–11

    Article  PubMed  Google Scholar 

  • Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gerken H, Huang J, Chen F (2013) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Proc Biochem 48:788–795

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 99(13):5407–5418

    Article  CAS  PubMed  Google Scholar 

  • Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580—a high triglyceride producer. Mar Biotechnol 15:48–55

    Article  CAS  Google Scholar 

  • Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiol Plant 38(2):38

    Article  CAS  Google Scholar 

  • Ng I-S, Tan S-I, Kao P-H, Chang Y-K, Chang J-S (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J. https://doi.org/10.1002/biot.201600644

    Article  PubMed  Google Scholar 

  • Noda J, Mühlroth A, Bučinská L, Dean J, Bones AM, Sobotka R (2017) Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: antibiotic resistance and protoplast production. J Appl Phycol 29(2):853–863

    Article  CAS  Google Scholar 

  • Oudot-Le Secq M-P, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BV (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277(4):427–439

    Article  CAS  PubMed  Google Scholar 

  • Prasad B, Nithya V, Jeong HJ, General T, Cho M-Gi, Lein W (2014) Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl Microbiol Biotechnol 98(20):8629–8639

    Article  CAS  PubMed  Google Scholar 

  • Prasad B, Lein W, Lindenberger CP, Buchholz R, Vadakedath N (2018) An optimized method and a dominant selectable marker for genetic engineering of an industrially promising microalga—Pavlova lutheri. J Appl Phycol. https://doi.org/10.1007/s10811-018-1617-9

    Article  Google Scholar 

  • Pratheesh PT, Vineetha M, Kurup GM (2014) An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol 56(6):507–515

    Article  CAS  PubMed  Google Scholar 

  • Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Rus J Plant Physiol 60(4):521–528

    Article  CAS  Google Scholar 

  • Rathod JP, Prakash G, Pandit R, Lali AM (2013) Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth Res 118(1):141–146

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Johnson AMA, Kumar JK, Naveen T, Devi MC (2017) Heterologous expression of Infectious bursal disease virus VP2 gene in Chlorella pyrenoidosa as a model system for molecular farming. Plant Cell Tissue Organ Cult 131(1):119–126

    Article  CAS  Google Scholar 

  • Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33(4):74

    Article  CAS  PubMed  Google Scholar 

  • Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba S (2015) Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales). Algal Res 10:8–15

    Article  Google Scholar 

  • Simon DP, Anila N, Gayathri K, Sarada R (2016) Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium-mediated genetic transformation. Algal Res 18:257–265

    Article  Google Scholar 

  • Srinivasan R, Gothandam KM (2016) Synergistic action of D-glucose and acetosyringone on Agrobacterium strains for efficient Dunaliella transformation. PLoS ONE 11(6):e0158322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Úbeda-Mínguez P, Chileh T, Dautor Y, García-Maroto F, Alonso DL (2015) Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga-Tetraselmis chuii. J Appl Phycol 27(1):223–232

    Article  CAS  Google Scholar 

  • Velea S, Ilie L, Filipescu L (2011) Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. UPB Sci Bull Series B 73(4):81–94

    CAS  Google Scholar 

  • Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12:180–183

    Article  CAS  Google Scholar 

  • Wei X, Chen C, Yu Q, Gady A, Yu Y, Liang G, Gmitter FG Jr (2014) Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges. Plant Sci 227:28–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. J. Steinbrenner (Universität Konstanz, Germany) and Prof. Choi PS (Nambu University, South Korea) for kindly providing the plasmid pPLAT-pds-L504R and Agrobacterium tumefaciens strain LBA4404, respectively. The authors also appreciate the funding bodies Korea Institute of Advanced Technology, Korea, and the Federal Ministry of Education and Research, Germany for supporting the work. BP also acknowledges Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander-University of Erlangen Nuremberg, Germany for the research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithya Vadakedath.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 900 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, B., Lein, W., Thiyam, G. et al. Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. Photosynth Res 140, 173–188 (2019). https://doi.org/10.1007/s11120-018-0587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0587-8

Keywords

Navigation