Skip to main content
Log in

Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract.

A rare earth element (REE) hyperaccumulator, Dicranopteris dichotoma, that accumulates more than 0.1% REEs dry leaf mass has been discovered in southern China. The different components of chloroplast were isolated and the concentration of REEs in each component was determined by ICP-MS. The experimental data indicated that about 8% of total leaf REEs was present in the chloroplast of Dicranopteris dichotoma. In order to thoroughly study the distribution of REEs among different components of chloroplast, the membrane of chloroplast, the intact thylakoid and the photosystem II (PS II system) of D. dichotoma were isolated from the chloroplast. It was found that half of total chloroplast REEs was stored at the membrane of the chloroplast and another half was in the thylakoid. And 25% of total chloroplast REEs was bound with PS II system of D.dichotoma. The concentration of REEs in chlorophyll a was only at the level of μg/g on the bases of chlorophylls. These data are useful for understanding of both the storage of REEs in chloroplast and the effect of REEs on the photosynthesis of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.

Similar content being viewed by others

Reference

  1. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) J Geochem Explor 7:49–77

    Google Scholar 

  2. Brown, SL, RL Chaney, JS Angle, AJM Baker (1995) Soil Science Society of America Journal 59:125–133

  3. Lasat, MM, AJM Baker, LV Kochian (1996) Plant physiology 112:1715–1722

  4. Brown, SL, RL Chaney, JS Angle, AJM Baker (1994) J Environ. Qual 23:1151–1157

  5. Kramer U, Cotter-Howells JD, Charnoch JM, Baker AJM, Smith JAC (1996) Nature 379:635–638

    Google Scholar 

  6. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Plant Physiol. 122:1343–1353

  7. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Plant Physiol 109:427–433

    Google Scholar 

  8. Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Teery N (1998) Environ Sci Technol 32:3087–3093

    Google Scholar 

  9. De Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Plant Physiol 117:1487–1494

    Google Scholar 

  10. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Plant Physiol 122:1171–1177

    Google Scholar 

  11. Moffat AS (1995) Science 269:302–303

    Google Scholar 

  12. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) Plant Physiol. 91:780–787

  13. Krotz RM, Evangelou BP, Wagner GJ (1989) Plant Physiol. 91:780–787

  14. Vogeli-Lange R, Wagner GJ (1990) Plant Physiol. 92:1086–1093

  15. Nishimura K, Igarashi K, Kakinuma Y (1998) J. Bacteriol 180:1962–1964

    Google Scholar 

  16. Hames BD, Hooper NM, Houghton JD (1999) Bios Scientific pp:7–8

  17. www.protein.ethz.ch/lectures/bcl/part2/overheads26.pdf

  18. Ozaki, T., S. Enomoto, Y. Minai, S. Ambe, F. Ambe, Y. Makide (2000) J. Plant. Physiol. 156:330–334

    Google Scholar 

  19. Nakatani HY, Barber J, Forrester JA (1978) Biochim Biophys Acta 504:215–225

    Google Scholar 

  20. Yamamoto Y, Nakayama S, Cohn CL, Krogmann DW (1987) Arch Biochem Biophys 255:156–161

    Google Scholar 

  21. Nakatani HY, Barber J (1980) Biochim Biophys Acta 591:82–91

    Google Scholar 

  22. Taka-aki O (2000) J. Inorg Biochem 82:85–91

    Google Scholar 

  23. Karukstis KK, Kao MY, Savin DA, Bittker RA, Kaphengst KJ, Emetarom CM, Naito NY, Takamoto DY (1995) J.Phys.Chem. 99:4339–4346

    Google Scholar 

  24. Hong FS, Wei ZG, Zhao GW (2001) Chemical J. Chinese University 22:1790–1794

    Google Scholar 

  25. Wang QQ, Liu JL, Lai Y, Yang LM, Huang BL (2000) Anal Sci 17:789–791

    Google Scholar 

  26. Wangner GL, Siegelman HW (1975) Science 190:1298–1299

    Google Scholar 

  27. Zhang SZ, Shan XQ (1997) At Spectra 18:140–144.

    Google Scholar 

  28. Li FL, Shan XQ, Zhang TH, Zhang SZ (1998) Environ. Pollut. 102:269–277

    Google Scholar 

  29. Atsushi H, Norman SR (1978) Anal Biochem 90:420–426

    Google Scholar 

  30. Thomas W, Wilhelm S, Dieter K, Raimund K, Helmut S (1996) J.Agric.Food Chem 44:2006–2013

    Google Scholar 

  31. Corrakini D, Huber CG, Timperio AM, Zolla L (2000) J. Chromatogr. A 886:111–121

    Google Scholar 

Download references

Acknowledgement.

This work is supported by the National Natural Science Foundation of China (grant No.20237010, 20177030 and 40171086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-quan Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xp., Shan, Xq., Zhang, Sz. et al. Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma . Anal Bioanal Chem 376, 913–917 (2003). https://doi.org/10.1007/s00216-003-2014-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2014-y

Keywords

Navigation