Skip to main content

Advertisement

Log in

Comparing machine learning algorithms for predicting and digitally mapping surface soil available phosphorous: a case study from southwestern Iran

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In developing countries like Iran, where information is scarce, understanding the spatial variability of soil available phosphorous (SAP), one of the three major nutrients, is crucial for effective agricultural ecosystem management. This study aimed to predict and digitally map the spatial distribution and related uncertainty of SAP while also assessing the impact of environmental factors on SAP variability in the topsoils. A study area from northern Khuzestan province, Iran was selected as case study area. Three machine learning (ML) models, namely, Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR), were used to develop predictive relationship between surface soil (0–10 cm) SAP content and environmental covariates derived from a digital elevation model and Landsat 8 images. A total of 250 topsoil samples were collected following the conditioned Latin Hypercube Sampling (cLHS) approach and several soil properties were measured in the laboratory. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Lin’s Concordance Correlation Coefficient (LCCC) were used to determine the accuracy of models. The findings indicated that the RF algorithm demonstrated the most favorable performance, with a mean absolute error (MAE) of 0.85 mg SAP kg−1, the lowest root mean square error (RMSE) of 0.99 mg SAP kg−1, and the highest linear correlation coefficient (LCCC) values of 0.96. This suggests that the RF algorithm had the least tendency to overestimate or underestimate SAP contents compared to other methods. Consequently, the RF algorithm was selected as the optimal choice. Predictive ML models were employed to digitally map SAP contents within the region. Spatial patterns of SAP contents showed an increasing gradient from west to east. The spatial variability information provides a basis for developing sustainable production system in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atkinson, P. M., & Tatnall, A. R. L. (1997). Introduction to neural networks in remote sensing. International Journal of Remote Sensing, 18, 699–709.

    Article  ADS  Google Scholar 

  • Bagheri Bodaghabadi, M., Martínez-Casasnovas, J. A., Salehi, M. H., Mohammadi, J., Esfandiarpoor Borujeni, I., & Toomanian, N. (2015). Digital soil mapping using artificial neural networks and terrain-related attributes. Pedosphere, 25(4), 580–591.

    Article  Google Scholar 

  • Bergmeir, C., & Benítez, J. M. (2012). Neural networks in R using the Stuttgart neural network simulator: RSNNS. Journal of Statistical Software, 46(7), 1–26.

    Article  Google Scholar 

  • Beucher, A., Siemssen, R., Frojo, S., Osterholm, P., Martinkauppi, A., & Eden, P. (2015). Artificial neural network for mapping and characterization of acid sulfate soils: Application to the Sirppujoki River catchment, southwestern Finland. Geoderma, 247–248, 38–50.

    Article  ADS  Google Scholar 

  • Biau, G., & Scornet, E. (2016). A random forest-guided tour. TEST, 25, 197–227.

    Article  MathSciNet  Google Scholar 

  • Biswas, A., & Zhang, Y. (2018). Sampling designs for validating digital soil maps: A review. Pedosphere, 28(1), 1–15.

    Article  Google Scholar 

  • Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with R (1st ed.). Chapman and Hall/CRC.

    Book  Google Scholar 

  • Boettinger, J. L., Howell, D. W., Moore, A. C., Hartemink, A. E., & Kienast-Brown, S. (Eds.). (2010). Digital soil mapping: Bridging research, environmental application, and operation. Springer.

    Google Scholar 

  • Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., & Kienast-Brown, S. (2008). Landsat spectral data for digital soil mapping. In A. E. Hartemink, A. B. McBratney, & M. L. Mendoca-Santos (Eds.), Digital soil mapping with limited data (pp. 193–203). Springer.

    Chapter  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464–465.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Chagas, C. D. S., Vieira, C. A. O., & Filho, E. I. F. (2013). Comparison between artificial neural networks and maximum likelihood classification in digital soil mapping. Reviesta Brasileira De Ciêncio Do Solo, 37(2), 339–351.

    Article  Google Scholar 

  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.

    Article  ADS  Google Scholar 

  • Clifton, C. (2023). Data mining. Encyclopedia Britannica, https:// www. britannica.com/ technology/data-mining/

  • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297.

    Article  Google Scholar 

  • Corvalho Gomes, L., Faria, R. M., De Souza, E., Veloso, G. V., Schaefer, C. E. G. R., & Filho, E. I. F. (2019). Modeling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(9), 337–350.

    Article  ADS  Google Scholar 

  • da Silva Chagas, C., de Carvalho Junior, W., Bhering, S. B., & Calderano Filho, B. (2016). Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA, 139, 232–240.

    Article  Google Scholar 

  • Dai, P. F., Qigang, Z., Zhiqiang, L. V., Xuemei, W., & Gangcai, L. (2014). Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45, 184–194.

    Article  CAS  Google Scholar 

  • Deiss, L., Margenot, A. J., Culman, S. W., & Demyan, M. S. (2020). Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 365, 114227.

    Article  ADS  CAS  Google Scholar 

  • Diaz-Uriarte, R., & de Andrés, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estevez, V., Beucher, A., Mattback, S., Boman, A., Auri, J., & Bjork, K. M. (2022). Machine Learning techniques for acid sulfate soil mapping in southeastern Finland. Geoderma, 406, 115446.

    Article  ADS  CAS  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.

    Article  ADS  Google Scholar 

  • Forkuor, G., Hounkpatin, O. K. L., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12, e0170478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox, E. W., Ver Hoef, J. M., & Olsen, A. R. (2020). Comparing spatial regression to random forests for large environmental data sets. PLoS ONE, 15(3), e0229509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage.

    Google Scholar 

  • Gershenfeld, N. (1999). The nature of mathematical modeling (p. 356). Cambridge University Press.

    Google Scholar 

  • Goldstein, B. A., Polley, E. C., & Briggs, F. B. S. (2011). Random forests for genetic association studies. Statistical Applications in Genetics and Molecular Biology, 10(1), 32.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Guo, L., Linderman, M., Shi, T., Chen, Y., Duan, L., & Zhang, H. (2018). Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling. Remote Sensing, 10, 888.

    Article  ADS  Google Scholar 

  • Guo, Y., Chen, S., Li, X., Cunha, M., Jayavelu, S., & Cammarano, D. (2022). Machine learning-based approaches for predicting SPAD values of maize using multi - spectral images. Remote Sensing, 14(6), 1337.

    Article  ADS  Google Scholar 

  • Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., & Shepherd, K. D. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10, 1–26.

    Article  Google Scholar 

  • Hengl, T., Leenaars, J. G. B., Shepherd, K. D., Walsh, M. G., Heuvelink, G. B. M., & Mamo, T. (2017). Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 109, 77–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocking, R. R. (2013). Methods and applications of linear models: Regression and the analysis of variance (3rd ed., p. 720), John Wiley Sons Inc.

    Google Scholar 

  • Hojati, S. (2019). Use of spatial statistics to identify hotspots of lead and copper in selected soils from north of Khuzestan Province, southwestern Iran. Archives of Agronomy and Soil Science, 65(5), 654–669.

    Article  CAS  Google Scholar 

  • Hsu, S. H., Hsieh, J. J. P., Chih, T. C., & Hsu, K. C. (2009). A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression. Expert Systems and Application, 36, 7947–7951.

    Article  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis (p. 521). Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Jahandideh Mahjenabadi, V. A., Mousavi, S. R., Rahmani, A., Karami, A., Asadi Rahmani, H., Khavazi, K., et al. (2022). Digital mapping of soil biological properties and wheat yield using remotely sensed, soil chemical data and machine learning approaches. Computers and Electronics in Agriculture, 197, 106978.

    Article  Google Scholar 

  • Kelava, A., Moosbrugger, H., Dimitruk, P., & Schermelleh-Engel, K. (2008). Multicollinearity and missing constraints. Methodology, 4(2), 51–66.

    Article  Google Scholar 

  • Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modeling, 81, 401–418.

    Article  Google Scholar 

  • Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (p. 600). Springer.

    Book  Google Scholar 

  • Kumar Taloor, A., Singh Manhas, D., & Chandra Kothyari, G. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051.

    Article  Google Scholar 

  • Lagacherie, P. (2008). Digital soil mapping: A state of the art. In A. E. Hartemink, A. McBratney, & M. de Lourdes Mendonça-Santos (Eds.), Digital soil mapping with limited data (pp. 3–14). Springer.

    Chapter  Google Scholar 

  • Lemanowicz, J. (2018). Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental Science and Pollution Research, 25, 33773–33782.

    Article  CAS  PubMed  Google Scholar 

  • Liaw, A., & Wiener, M. (2001). Classification and regression by randomforest. R News, 2, 18–22.

    Google Scholar 

  • Lu, Q., Tian, S., & Wei, L. (2023). Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Science of the Total Environment, 856, 159171.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ma, G., Ding, J., Han, L., Zhang, Z., & Ran, S. (2021). Digital mapping of soil salinization based on Sntinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2, 177–188.

    Article  Google Scholar 

  • Makungwe, M., Chabala, L. M., Chishala, B. H., & Lark, R. M. (2021). Performance of linear mixed models and random forests for spatial prediction of soil pH. Geoderma, 397, 115079.

    Article  ADS  CAS  Google Scholar 

  • Malone, B. P., Minasny, B., Odgers, N. P., & McBratney, A. B. (2014). Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 232–234, 34–44.

    Article  ADS  Google Scholar 

  • Martin, M. P., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L., et al. (2011). Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 8, 1053–1065.

    Article  ADS  CAS  Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52.

    Article  ADS  Google Scholar 

  • Meier, M., Souza, E., Francelino, M. R., Fernandes Filho, E. I., & Schaefer, C. E. G. R. (2018). Digital soil mapping using machine learning algorithms in a tropical mountainous area. Reviesta Brasilaria De Ciencia De Solo., 42, e0170421.

    Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F. (2015). e1071: Misc functions of the Department of Statistics. R Foundation for Statistical Computing. Retrieved June 21, 2017, from https://CRAN.R-project.org/package=e1071

  • Meyer, H., & Pebesma, E. (2021). Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, 12(9), 1620–1633.

    Article  Google Scholar 

  • Miller, B.A. (2012). The need to continue improving soil survey maps. Soil Horizons, 53(3), 11–15.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388.

    Article  ADS  Google Scholar 

  • Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.

    Article  ADS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. R. Keenay (Eds.), Methods of soil analysis, part 2: Chemical and microbiological properties (pp. 539–580). American Society of Agronomy.

    Google Scholar 

  • Nhangumbe, M., Nascetti, A., Georganos, S., & Ban, Y. (2023). Supervised and unsupervised machine learning approaches using sentinel data for flood mapping and damage assessment in Mozambique. Remote Sensing Applications: Society and Environment, 32, 101015.

    Article  Google Scholar 

  • Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circ, 939

  • Pahlevan-Rad, M. R., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234, 97–106.

    Article  ADS  Google Scholar 

  • Planchon, O., & Darboux, F. (2001). A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 46, 159–176.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral potential mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12(3), 155–171.

    Article  CAS  Google Scholar 

  • Pouladi, N., Møller, A. B., Tabatabai, S., & Greve, M. H. (2019). Mapping soil organic matter contents at field level with Cubist. Random Forest and Kriging: Geoderma, 342, 85–92.

    CAS  Google Scholar 

  • Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1301

    Article  Google Scholar 

  • R Development Core Team, (2021). R: A language and environment for statistical computing.In: R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org

  • Riemersma, S., Little, J., Ontkean, G., Moskal-Hébert, T. (2006). Phosphorus sources and sinks in watersheds: A review. Alberta soil phosphorus limits project, 82

  • Sachs, J., Remans, R., Smukler, S., Winowiecki, L., Andelman, S. J., & Cassman, K. G. (2010). Monitoring the world’s agriculture. Nature, 466(7306), 558–560. https://doi.org/10.1038/466558a

    Article  ADS  CAS  PubMed  Google Scholar 

  • SAGA GIS, System for Automated Geoscientific Analyses, (2022). http://www.saga-gis.org.

  • Sahraee, N., Landi, A., & Hojati, S. (2023). Digital mapping of soil texture components in part of Khuzestan plan lands using machine learning models. Iranian Journal of Soil and Water Research, 53(10), 2261–2276. (In Persian).

    Google Scholar 

  • Schmidt, K., Behrens, T., Daumann, J., Ramirez-Lopez, L., Werban, U., Dietrich, P., & Scholten, T. (2014). A comparison of calibration sampling schemes at the field scale. Geoderma, 232–234, 243–256.

    Article  ADS  Google Scholar 

  • Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003). Predictive soil mapping: A review. Progress in Physical Geography: Earth and Environment, 27(2), 171–197.

    Article  ADS  Google Scholar 

  • Shiri, J., Keshavarzi, A., Kisi, O., Mohsenzadeh Karimi, S., Karimi, S., & Nazemi, A. H. (2020). Estimating soil available phosphorous content through coupled wavelet-data-driven models. Sustainabillity, 12, 2150.

    Article  CAS  Google Scholar 

  • Siewert, M. B. (2018). High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences, 15, 1663–1682.

    Article  ADS  Google Scholar 

  • Silva, S. H. G., Owens, P. R., Silva, B. M., De Oliveira, G. C., De Menezes, M. D., & Pinto, L. C. (2015). Evaluation of conditioned Latin hypercube sampling as a support for soil mapping and spatial variability of soil properties. Soil Science Society of America Journal, 79, 603–611.

    Article  ADS  CAS  Google Scholar 

  • Statistical Center of Iran. (2021). Iran statistical yearbook. Management and Planning Organization.

    Google Scholar 

  • Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28.

    Article  ADS  CAS  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., & Triantafilis, J. (2015). Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 253–254, 67–77.

    Article  ADS  Google Scholar 

  • Taghizadeh-Mehrjerdi, R. (2016). Digital mapping of cation exchange capacity using genetic programming and soil depth functions in Baneh region. Iran. Archives of Agronomy and Soil Science, 62(1), 109–126.

    Article  Google Scholar 

  • Taghizadeh-Mehrjerdi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110.

    Article  ADS  Google Scholar 

  • Teng, H. T., Viscarra Rossel, R. A., Shi, Z., & Behrens, T. (2018). Updating a national soil classification with spectroscopic predictions and digital soil mapping. CATENA, 164, 125–134.

    Article  Google Scholar 

  • Tiessen, H., Roberts, T. L., & Stewart, J. W. B. (1983). Carbonate analysis in soils and minerals by acid digestion and two-endpoint titration. Communications in Soil Science and Plant Analysis, 14(2), 161–166.

    Article  CAS  Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. Springer.

    Book  Google Scholar 

  • Vasiliniuc, I., Patriche, C. V., Pîrnău, R., & Roşca, B. (2013). Statistical spatial models of soil parameters. An approach using different methods at different scales. Environmental Engineering Management Journal, 12(3), 457–464.

    Article  Google Scholar 

  • Vaysse, K., & Lagacherie, P. (2015). Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4, 20–30.

    Article  Google Scholar 

  • Viscarra Rossel, R.A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158, 46–54.

    Article  ADS  Google Scholar 

  • Viscarra-Rossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford, D., & Campbell, P. H. (2015). The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Research, 53, 845–864.

    Article  CAS  Google Scholar 

  • Wadoux, A. M. C., Minasny, B., & McBratney, A. B. (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210, 103359.

    Article  Google Scholar 

  • Wang, H., Yilihamu, Q., Yuan, M., Bai, H., Xu, H., & Wu, J. (2020). Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecological Indicator, 119, 106801.

    Article  CAS  Google Scholar 

  • Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394–403.

    Article  CAS  Google Scholar 

  • Wilding, L. (1985). Spatial variability: Its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil spatial variability (pp. 166–194). Pudoc.

    Google Scholar 

  • Winthers, E., Fallon, D., Haglund, J., DeMeo, T., Nowacki, G., Tart, D. (2005). Terrestrial Ecological Unit Inventory technical guide. Washington, DC: U.S. Department of Agriculture, Forest Service, Washington Office, Ecosystem Management Coordination Staff. 245 p.

  • Xie, X., Wu, T., Zhu, M., Jiang, G., Xu, Y., Wang, X., & Pu, L. (2021). Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecological Indicator, 120, 106925.

    Article  CAS  Google Scholar 

  • Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., & Döring, S. (1998). SNNS stuttgart neural network simulator user manual, version 4.2. IPVR, University of Stuttgart and WSI. University of Tübingen.

    Google Scholar 

  • Zhang, H., Wu, P. B., Yin, A. J., Yang, X. H., Zhang, M., & Gao, C. (2017). Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment, 592, 704–713.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wu, W., & Liu, H. (2019). Factors affecting variations of soil pH in different horizons in hilly regions. PLoS ONE, 14(6), e0218563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Iran National Science Foundation (Project No. 98022783) and the Shahid Chamran University of Ahvaz for the financial support they provided for this study.

Funding

This work was financially supported by the Iran National Science Foundation (INSF) and the Grant Number is 98022783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Hojati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojati, S., Biswas, A. & Norouzi Masir, M. Comparing machine learning algorithms for predicting and digitally mapping surface soil available phosphorous: a case study from southwestern Iran. Precision Agric 25, 914–939 (2024). https://doi.org/10.1007/s11119-023-10099-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10099-5

Keywords

Navigation