Skip to main content
Log in

A mobile lab-on-a-chip device for on-site soil nutrient analysis

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In this paper, a mobile sensor for on-site analysis of soil sample extracts is presented. As a versatile tool for scanning ion concentrations in liquid samples, it especially allows the analysis of NO3, NH4, K and PO4. The sensor mainly consists of a microfluidic chip in which the sample ions are separated in an electric field (capillary electrophoresis) and the individual ion concentrations are detected by a conductivity measurement. For the adaption of the device to field conditions, two major concerns were addressed. Firstly, nano-porous material was used as a barrier between the sample container and the analysis channel of the microfluidic chip. This prevents pressure driven leakage of the sample into the chip due to non-horizontal orientation of the device. Secondly, a new method for the injection of the sample into the chip was used. It reduces the number of fluidic connections between chip and operation device to three instead of the commonly used four connections. The sensor performance was tested on multi-ion solutions with calibration series for NO3, NH4, K and PO4. For the first on-site test, a quick soil nutrient extraction procedure with water was used. The sensor data was compared to standard laboratory results. The potential of the sensor for soil nutrient analysis is discussed together with required improvements of the sensor performance and of the nutrient extraction procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, X., Li, M., Zheng, L., Liu, Y., & Sun, H. (2014). A portable soil nitrogen detector based on NIRS. Precision Agriculture, 15(1), 3–16.

    Article  Google Scholar 

  • Artigas, J., Beltran, A., Jimenez, C., Baldi, A., Mas, R., Dominguez, C., et al. (2001). Application of ion sensitive field effect transistor based sensors to soil analysis. Computers and Electronics in Agriculture, 31, 281–293.

    Article  Google Scholar 

  • Becker, H., Mühlberger, H., Hoffmann, W., Clemens, T., Klemm, R., Gärtner, C. (2008). Portable CE system with contactless conductivity detection in an injection molded polymer chip for on-site food analysis. Proceedings of SPIE 6886, Microfluidics, BioMEMS, and Medical Microsystems VI (pp. 68860C-1–68860C-7). Bellingham, USA: SPIE.

  • Bharadwaj, R., & Santiago, J. G. (2005). Dynamics of field-amplified sample stacking. Journal of Fluid Mechanics, 543(1), 57–92.

    Article  CAS  Google Scholar 

  • Bindraban, P. S., Stoorvogel, J. J., Jansen, D. M., Vlaming, J., & Groot, J. J. R. (2000). Land quality indicators for sustainable land management: proposed method for yield gap and soil nutrient balance. Agriculture, Ecosystems & Environment, 81(2), 103–112.

    Article  Google Scholar 

  • Birrell, S., Hummel, J. (1997). Multi-sensor ISFET system for soil analysis. Proceedings of the First European Conference on Precision Agriculture (pp. 459–468). Oxford, UK: Bios Scientific Publishers.

  • Birrell, S. J., & Hummel, J. W. (2001). Real-time multi-ISFET/FIA soil analysis system with automatic sample extraction. Computers and Electronics in Agriculture, 32(1), 45–67.

    Article  Google Scholar 

  • Christy, C., Drummond, P., Lund, E. (2006). Precision agriculture applications of an on-the-go soil reflectance sensor. Proceedings of the Eighth International Conference on Precision Agriculture. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.500.9082&rep=rep1&type=pdf. Accessed 24 Jan 2016.

  • Coltro, W. K. T., Lima, R. S., Segato, T. P., Carrilho, E., de Jesus, D. P., do Lago, C. L., et al. (2012). Capacitively coupled contactless conductivity detection on microfluidic systems—ten years of development. Analytical Methods, 4, 25–33.

    Article  CAS  Google Scholar 

  • Ewing, A. G., Wallingford, R. A., & Olefirowicz, T. M. (1989). Capillary electrophoresis. Analytical Chemistry, 61(4), 292A–303A.

    Article  CAS  PubMed  Google Scholar 

  • Fercher, G., Haller, A., Smetana, W., & Vellekoop, M. J. (2010a). Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples. Analyst, 135, 965–970.

    Article  CAS  PubMed  Google Scholar 

  • Fercher, G., Haller, A., Smetana, W., & Vellekoop, M. J. (2010b). End-to-end differential contactless conductivity sensor for microchip capillary electrophoresis. Analytical Chemistry, 82, 3270–3275.

    Article  CAS  PubMed  Google Scholar 

  • Fracassi da Silva, J. A., & do Lago, C. L. (1998). An oscillometric detector for capillary electrophoresis. Analytical Chemistry, 70, 4339–4343.

    Article  Google Scholar 

  • Gärtner, C., Hoffmann, W., Demattio, H., Clemens, T., Klotz, M., Klemm, R., Becker, H. (2009). Portable integrated capillary-electrophoresis system using disposable polymer chips with capacitively coupled contactless conductivity detection for on-site analysis of foodstuff. Proceedings of SPIE 7315, Sensing for Agriculture and Food Quality and Safety (pp. 731505–731506). Bellingham, USA: SPIE.

  • Guijt-van Duijn, R. M., Evenhuis, C. J., Macka, M., & Haddad, P. R. (2004). Conductivity detection for conventional and miniaturised capillary electrophoresis systems. Electrophoresis, 25(23–24), 4032–4057.

    Article  Google Scholar 

  • Ho, C.-H., & Tsay, Y.-F. (2010). Nitrate, ammonium, and potassium sensing and signaling. Current Opinion in Plant Biology, 13(5), 604–610.

    Article  CAS  PubMed  Google Scholar 

  • Howald, M., Elsenbeer, H., Laczko, E., & Schlunegger, U. P. (1995). Capillary electrophoresis—a fast and universal tool in soil analysis. Journal of Analytical Sciences, Methods and Instrumentation, 2(4), 170–175.

    CAS  Google Scholar 

  • Karlinsey, J. M. (2012). Sample introduction techniques for microchip electrophoresis: a review. Analytica Chimica Acta, 725, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.-J., Hummel, J. W., Sudduth, K. A., & Motavalli, P. P. (2007). Simultaneous analysis of soil macronutrients using ion-selective electrodes. Soil Science Society of America Journal, 71, 1867–1877.

    Article  Google Scholar 

  • Kodaira, M., & Shibusawa, S. (2013). Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma, 199, 64–79.

    Article  CAS  Google Scholar 

  • Kubáň, P., & Hauser, P. C. (2009). Ten years of axial capacitively coupled contactless conductivity detection for CZE—a review. Electrophoresis, 30(1), 176–188.

    Article  PubMed  Google Scholar 

  • Kubán, P., Nguyen, H., Macka, M., Haddad, P., & Hauser, P. C. (2007). New fully portable instrument for the versatile determination of cations and anions by capillary electrophoresis with contactless conductivity detection. Electroanalysis, 19, 2059–2065.

    Article  Google Scholar 

  • Kuhr, W. G. (1990). Capillary electrophoresis. Analytical Chemistry, 62(12), 403R–414R.

    Article  CAS  PubMed  Google Scholar 

  • Laugere, F., Guijt, R. M., Bastemeijer, J., van der Steen, G., Berthold, A., Baltussen, E., et al. (2003). On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Analytical Chemistry, 75(2), 306–312.

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty, B. D., Barry, E. F., & Cholli, A. L. (2000). A rapid soil nutrient sensor device based on capillary zone electrophoresis. Journal of Environmental Science and Health, Part A, 35, 189–201.

    Article  Google Scholar 

  • Oreshkin, N. (1980). Extraction of mobile forms of phosphorus and potassium by the Egner–Riehm–Domingo method. Agrokhimiia, 8, 135–138.

    Google Scholar 

  • Puchberger-Enengl, D., Bipoun, M., Smolka, M., Krutzler, C., Keplinger, F., Vellekoop, M.J. (2013). Hydrogel plug for independent sample and buffer handling in continuous microchip capillary electrophoresis. Proceedings of SPIE, Smart Sensors, Actuators, and MEMS VI (pp. 87631B–87631B-6). Bellingham, USA: SPIE.

  • Roberts, D. C., Brorsen, B. W., Solie, J. B., & Raun, W. R. (2013). Is data needed from every field to determine in-season precision nitrogen recommendations in winter wheat? Precision Agriculture, 14, 245–269.

    Article  Google Scholar 

  • Roth, G. W., Beegle, D. B., Fox, R. H., Toth, J. D., & Piekielek, W. P. (1991). Development of a quicktest kit method to measure soil nitrate. Communications in Soil Science and Plant Analysis, 22, 191–200.

    Article  CAS  Google Scholar 

  • Schirrmann, M., Gebbers, R., & Kramer, E. (2013). Performance of automated near-infrared reflectance spectrometry for continuous in situ mapping of soil fertility at field scale. Vadose Zone Journal, 12(4), 1–10.

    Article  Google Scholar 

  • Scholefield, D., & Titchen, N. (1995). Development of a rapid field test for soil mineral nitrogen and its application to grazed grassland. Soil Use and Management, 11, 33–43.

    Article  Google Scholar 

  • Shaw, R., Williams, A., Miller, A., & Jones, D. (2013). Assessing the potential for ion selective electrodes and dual wavelength UV spectroscopy as a rapid on-farm measurement of soil nitrate concentration. Agriculture, 3, 327–341.

    Article  Google Scholar 

  • Shi, T., Cui, L., Wang, J., Fei, T., Chen, Y., & Wu, G. (2012). Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant and Soil, 366(November), 363–375.

    Google Scholar 

  • Shibusawa, S. (2003). On-line real time soil sensor. IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2003 (vol. 2, pp. 1061-1066). New York, USA: IEEE.

  • Sibley, K.J., Brewster, G.R., Astatkie, T., Adsett, J.F., Struik, P.C. (2010). In-field measurement of soil nitrate using an ion-selective electrode. Advances in Measurement Systems, InTech Open (pp. 1–27). http://cdn.intechweb.org/pdfs/9958.pdf. Accessed 24 Jan 2016.

  • Smolka, M., Puchberger-Enengl, D., Bipoun, M., Fercher, G., Klasa, A., Krutzler, C., et al. (2013). A new injection method for soil nutrient analysis in capillary electrophoresis. Proceedings of SPIE 8763, Smart Sensors, Actuators, and MEMS VI (pp. 87631C-1–87631C-7). Bellingham, USA: SPIE.

  • Swinney, K., & Bornhop, D. J. (2000). Detection in capillary electrophoresis. Electrophoresis, 21(7), 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Tanyanyiwa, J., & Hauser, P. C. (2002). High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. Analytical Chemistry, 74(24), 6378–6382.

    Article  CAS  PubMed  Google Scholar 

  • Vandaveer, W. R., Pasas-Farmer, S., Fischer, D. J., Frankenfeld, C. N., & Lunte, S. M. (2004). Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis, 25, 21–22.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Walvoort, D. J. J., Mc Bratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    Article  CAS  Google Scholar 

  • Vohland, M., Ludwig, M., Thiele-Bruhn, S., & Ludwig, B. (2014). Determination of soil properties with visible to near- and mid-infrared spectroscopy: effects of spectral variable selection. Geoderma, 223–225(November), 88–96.

    Article  Google Scholar 

  • Wetselaar, R., Smith, G. D., & Angus, J. F. (1998). Field measurement of soil nitrate concentrations. Communications in Soil Science and Plant Analysis, 29, 729–739.

    Article  CAS  Google Scholar 

  • Zemann, A. J., Schnell, E., Volgger, D., & Bonn, G. K. (1998). Contactless conductivity detection for capillary electrophoresis. Analytical Chemistry, 70, 563–567.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding from the European Union in the framework of the Optifert project (FP7-OPTIFERT-286772) (http://www.optifert.eu/). Thanks to P. Svasek and E. Svasek for the support with the chip production, S. Mahlknecht and C. Dumhart for the development of the detection electronics, E. Pirker for technical support and Evonik Industries AG for providing the 55 µm PMMA sheets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Vellekoop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolka, M., Puchberger-Enengl, D., Bipoun, M. et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis. Precision Agric 18, 152–168 (2017). https://doi.org/10.1007/s11119-016-9452-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9452-y

Keywords

Navigation