Skip to main content
Log in

A portable soil nitrogen detector based on NIRS

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

As one of the most important soil nutrient components, soil total nitrogen (TN) content needs to be measured in precision agriculture. A portable soil TN detector based on the 89S52 microcontroller was developed, and a Back Propagation Neural Network (BP-NN) estimation model embedded in the detector was established using near-infrared reflectance spectroscopy with absorbance data at 1550, 1300, 1200, 1100, 1050, and 940 nm wavelengths. The detector consisted of two parts, an optical unit and a control unit. The optical unit included six near-infrared lamp-houses, a shared lamp-house drive circuit, a shared incidence and reflectance Y-type optical fiber, a probe, and a photoelectric sensor. The control unit included an amplifier circuit, a filter circuit, an analog-to-digital converter circuit, an LCD display, and a U-disk storage component. All six absorbance data as inputs were used to calculate soil TN content by means of the estimation model. Finally, the calculated soil TN content was displayed on the LCD display and at the same time stored in the U-disk. A calibration experiment was conducted. The soil TN content correlation coefficient (R 2) of the BP-NN estimation model was 0.88, and the validation R 2 was 0.75. This result indicated that the developed detector had a stable performance and a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamchuk, V. I., Dobermann, A., Morgan, M. T., & Brouder, S. M. (2002). Feasibility of on-the-go mapping of soil nitrate and potassium using ion-selective electrodes. ASAE Paper No. 02–1183, American Society of Agricultural Engineers, St. Joseph, MI, USA.

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.

    Article  Google Scholar 

  • Adamchuk, V. I., Lund, E. D., Sethuramasamyraja, B., Morgan, M. T., Dobermann, A., & Marx, D. B. (2005). Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture, 48(3), 272–294.

    Article  Google Scholar 

  • Adsett, J. F., Thottan, J. A., & Sibley, K. J. (1999). Development of an automated on-the-go soil nitrate monitoring system. Applied Engineering in Agriculture, 15(4), 351–356.

    Article  Google Scholar 

  • An, X. F., Li, M. Z., & Zheng, L. H. (2011). Estimation of Soil Total Nitrogen and Soil Moisture based on NIRS Technology. In D. L. Li & Y. Y. Chen (Eds.), Proceedings of CCTA 2011. The fifth International Conference of Computer and computing Technology in Agriculture (pp. 639–646). Germany: Springer.

  • Ben-Dor, E., & Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59, 364–372.

    Article  CAS  Google Scholar 

  • Chen, P. F., Liu, L. Y., & Wang, J. H. (2008). Real-time analysis of soil N and P with near infrared diffuse reflectance spectroscopy. Spectroscopy and Spectral Analysis, 28(2), 295–298.

    CAS  PubMed  Google Scholar 

  • Christy, C. D. (2008). Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Computers and Electronics in Agriculture, 61, 10–19.

    Article  Google Scholar 

  • Dalal, R. C., & Henry, R. J. (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectroscopy. Soil Science Society of America Journal, 50(1), 120–123.

    Article  CAS  Google Scholar 

  • Li, M. Z., Han, D. H., & Wang, X. (2006). Spectral analysis and application. Beijing, China: Science Press.

    Google Scholar 

  • Li, M. Z., Pan, L., Zheng, L. H., & An, X. F. (2010). Development of a portable SOM detector based on NIR diffuse reflection. Spectroscopy and Spectral Analysis, 30(4), 1146–1150.

    CAS  PubMed  Google Scholar 

  • Liu, L. T., Chen, X. G., & Wu, W. F. (2009). Near infrared detector with three wavelengths for grain protein content. Journal of Jilin University, 1(39), 93–97.

    Google Scholar 

  • Peng, Y. K., Zhang, J. X., & He, X. S. (1998). Analysis of soil moisture organic matter and total nitrogen content in loess in china with near infrared spectroscopy. Acta Pedologica Sinica, 35(4), 553–559.

    CAS  Google Scholar 

  • Shibusawa, S. (2003). On-line real time soil sensor. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechanics (pp. 1061–1066). Kobe, Japan: IEEE.

  • Shibusawa, S., Hirako, S., Otomo, A., Sakai, K., Sasao, A., & Yamazaki, K. (2000). Real-time soil spectrophotometer for in situ underground sensing. Journal of the Japanese Society of Agricultural Machinery, 62(5), 79–86.

    Google Scholar 

  • Shonk, J. L., Gaultney, L. D., Schulze, D. G., & Van Scoyoc, G. E. (1991). Spectroscopic sensing of soil organic matter content. Transactions of the ASAE, 34(5), 1978–1984.

    Article  Google Scholar 

  • Sinfield, J. V., Fagerman, D., & Colic, O. (2010). Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70, 1–18.

    Article  Google Scholar 

  • Sudduth, K. A., & Hummel, J. W. (1993). Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Transactions of the ASAE, 36(6), 1571–1582.

    Article  Google Scholar 

  • Sun, J. Y., Li, M. Z., Zheng, L. H., Hu, Y. G., & Zhang, X. J. (2006). Real-time analysis of soil moisture, soil organic matter, and soil total nitrogen with NIRS. Spectroscopy and Spectral Analysis, 26(3), 426–429.

    CAS  PubMed  Google Scholar 

  • Viscarra Rossel, R., Walvoort, R. A., & Mcbratney, D. J. J. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75.

    Article  CAS  Google Scholar 

  • Vohland, M., Michel, K., & Ludwig, B. (2011). Use of near-infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest-floor material in soil: usefulness of a genetic algorithm. Journal of Plant Nutrition and Soil Science, 174, 695–701.

    Article  CAS  Google Scholar 

  • Yu, F. J., Min, S. G., & Ju, X. G. (2002). Determination the content of nitrogen and organic substance in dry soil by using near infrared diffusion reflectance spectroscopy. Chinese Journal of Analysis Laboratory, 21(3), 49–51.

    CAS  Google Scholar 

  • Zhang, Z. Y., Chen, X. X., & Ren, P. (1992). Technology of near infrared spectroscopy. Beijing: China Agricultural Science & Technology Press.

    Google Scholar 

  • Zhang, Y., & Zhou, M. G. (2007). Methods for data process of near infrared spectroscopy Analysis. Infrared Technology, 29(6), 345–348.

    Google Scholar 

  • Zheng, L. H. (2007). Real-time Sensing of Soil Parameters Based on Spectroscopy. [Doctor’s Thesis], China Agricultural University, Beijing.

  • Zheng, L. H., Li, M. Z., An, X. F., & Sun, H. (2010). Forecasting soil parameters based on NIR and SVM. Transactions of the CSAE, 26(Supp. 2), 81–87.

    Google Scholar 

  • Zheng, L. H., Li, M. Z., Pan, L., Sun, J. Y., & Tang, N. (2008). Estimation of soil organic matter and soil total nitrogen based on NIR spectroscopy and BP neural network. Spectroscopy and Spectral Analysis, 28(5), 1160–1164.

    CAS  PubMed  Google Scholar 

  • Zheng, L. H., Li, M. Z., Pan, L., Sun, J. Y., & Tang, N. (2009). Application of wavelet packet analysis in estimating soil parameters based on NIR spectra. Spectroscopy and Spectral Analysis, 28(5), 1160–1164.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China program (61134011), Chinese National Programs for High Technology Research and Development Research Fund (2011BAD21B01, 2011AA100704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, X., Li, M., Zheng, L. et al. A portable soil nitrogen detector based on NIRS. Precision Agric 15, 3–16 (2014). https://doi.org/10.1007/s11119-012-9302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-012-9302-5

Keywords

Navigation