Skip to main content
Log in

Invariant Measures and Lower Ricci Curvature Bounds

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Given a metric measure space \((X,d,\mathfrak {m})\) that satisfies the Riemannian Curvature Dimension condition, RCD(K,N), and a compact subgroup of isometries GIso(X) we prove that there exists a G −invariant measure, \(\mathfrak {m}_G\) equivalent to \(\mathfrak {m}\) such that \((X,d,\mathfrak {m}_G)\) is still a RCD(K,N) space. We also obtain applications to Lie group actions on RCD(K,N) spaces. We look at homogeneous spaces, symmetric spaces and obtain dimensional gaps for closed subgroups of isometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrino, M., Bettiol, R.: Lie Groups and Geometric Aspects of Isometric Actions. Springer, Cham (2015). x + 213 pp. ISBN: 978–3–319–16612–4; 978–3–319–16613–1

    Book  Google Scholar 

  2. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. Modelling and optimisation of flows on networks, 1–155, Lecture Notes in Math., 2062 Fond. CIME/CIME Found. Subser. Springer, Heidelberg (2013)

    Google Scholar 

  3. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure. Trans. Amer. Math. Soc. 367(7), 4661–4701 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke. Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 59(1), 28–56 (2010)

    Article  MathSciNet  Google Scholar 

  7. Berestovskiı̆, V.N.: Generalized symmetric spaces. (Russian) Sibirsk. Mat. Zh. 26(2), 3–17 (1985). 221., translation in Siberian Math. J. 26 (1985), no. 2, 159–170

    MathSciNet  Google Scholar 

  8. Berestovskiı̆, V.N.: Homogeneous manifolds with an intrinsic metric. II. (Russian) Sibirsk. Mat. Zh. 30(2), 14–28 (1989). 225; translation in Siberian Math. J. 30 (1989), no. 2, 180–191

    MathSciNet  Google Scholar 

  9. Bruè, E., Semola, D.: Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows. arXiv:1804.07128 [math.MG]

  10. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007). Vol. I: xviii+ 500 pp., Vol. II: xiv+ 575 pp. ISBN: 978–3–540–34513–8; 3–540–34513–2

    Book  Google Scholar 

  11. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  Google Scholar 

  12. Colding, T.H., Naber, A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. (2) 176(2), 1173–1229 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dearricott, O., Galaz-García, F., Kennard, L., Searle, C., Weingart, G., Ziller, W.: Geometry of manifolds with non-negative sectional curvature. Lecture notes from the 3rd Mini-Meeting on Differential Geometry ”Recent Advances in the Geometry of Manifolds with Non-negative Sectional Curvature” held at the Center for Research in Mathematics (CIMAT), Guanajuato, December 6–17, 2010. Edited by Rafael Herrera and Luis Hernández-Lamoneda. Lecture Notes in Mathematics, 2110. Springer, Cham, 2014. viii+ 196 pp. ISBN: 978-3-319-06372-0; 978-3-319-06373-7

  14. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. of Math. (2) 136(2), 253–333 (1992)

    Article  MathSciNet  Google Scholar 

  16. Galaz-García, F., Guijarro, L.: Isometry groups of Alexandrov spaces. Bull. Lond. Math. Soc. 45(3), 567–579 (2013)

    Article  MathSciNet  Google Scholar 

  17. Galaz-García, F., Kell, M., Mondino, A., Sosa, G.: On quotients of spaces with Ricci curvature bounded below. Journal of Functional Analysis. https://doi.org/10.1016/j.jfa.2018.06.002 (2018)

  18. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc. 236(1113), vi+ 91 (2015). ISBN: 978–1–4704–1420–7

    MathSciNet  MATH  Google Scholar 

  20. Gigli, N., Mondino, A., Savaré, G.: Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. (3) 111(5), 1071–1129 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Gigli, N., Pasqualetto, E.: Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, preprint, arXiv:1611.09645 [math.DG]

  22. Gigli, N., Rajala, T., Sturm, K.-T.: Exponentiation on finite-dimensional spaces with Ricci curvature bounded from below. J. Geom Optimal maps Anal. 26(4), 2914–2929 (2016)

    Article  MathSciNet  Google Scholar 

  23. Grove, K.: Geometry Of, and Via, Symmetries. Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 2000), 31–53, Univ Lecture Ser., 27, Amer. Math. Soc., Providence, RI (2002)

  24. Guijarro, L, Santos-Rodríguez, J.: On the isometry group of RCD(kN)-spaces, Manuscripta Math. https://doi.org/10.1007/s00229-018-1010-7 (2018)

  25. Han, B.X.: Ricci tensor on RCD(k,n) spaces. J. Geom Anal. https://doi.org/10.1007/s12220-017-9863-7 (2017)

  26. Harvey, J.: Convergence of isometries, with semicontinuity of symmetry of Alexandrov spaces, Proc. Amer. Math. Soc. https://doi.org/10.1090/proc/12994 (2016)

  27. Ishihara, S.: Homogeneous Riemannian spaces of four dimensions. J. Math. Soc. Japan 7, 345–370 (1955)

    Article  MathSciNet  Google Scholar 

  28. Kell, M.: Transport maps, non-branching sets of geodesics and measure rigidity. Adv. Math. 320, 520–573 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kitabeppu, Y.: A suficient condition to a regular set of positive measure on RCD spaces, preprint, arXiv:1708.04309 [math.MG]

  30. Kitabeppu, Y., Lakzian, S.: Characterization of low dimensional RCD(k,N) spaces. Anal. Geom. Metr. Spaces 4, 187–215 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Kobayashi, S.: Transformation Groups in Differential Geometry, Reprint of the 1972 Edition. Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  32. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  33. Mann, L.N.: Gaps in the dimensions of isometry groups of Riemannian manifolds. J. Differential Geometry 11(2), 293–298 (1976)

    Article  MathSciNet  Google Scholar 

  34. Mondino, A., Naber, A.: Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds I, arXiv:1405.2222v2 [math.DG]

  35. Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73(2), 295–323 (1961)

    Article  MathSciNet  Google Scholar 

  36. Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong \(CD(K,\infty )-\)spaces. Calc. Var Partial Differential Equations 50(3-4), 831–846 (2014)

    Article  MathSciNet  Google Scholar 

  37. Sosa, G.: The isometry group of an RCD space is Lie. Potential Anal 49, 267 (2018). https://doi.org/10.1007/s11118-017-9656-4

    Article  MathSciNet  MATH  Google Scholar 

  38. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  39. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank his advisor Prof. Luis Guijarro for helpful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Santos-Rodríguez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by research grants MTM2014-57769-C3-3-P, and MTM2017-85934-C3-2-P (MINECO) and ICMAT Severo Ochoa Project SEV-2015-0554-17-1 (MINECO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Rodríguez, J. Invariant Measures and Lower Ricci Curvature Bounds. Potential Anal 53, 871–897 (2020). https://doi.org/10.1007/s11118-019-09790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-019-09790-y

Keywords

Mathematics Subject Classification (2010)

Navigation