Skip to main content
Log in

On the isometry group of \(RCD^*(K,N)\)-spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove that the group of isometries of a metric measure space that satisfies the Riemannian curvature condition, \(RCD^*(K,N),\) is a Lie group. We obtain an optimal upper bound on the dimension of this group, and classify the spaces where this maximal dimension is attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrino, M.M., Bettiol, R.G.: Lie groups and geometric aspects of isometric actions. Springer, Cham, (2015). x+213 pp. ISBN: 978-3-319-16612-4; 978-3-319-16613-1

  2. Ambrosio, L., Tilli, P.: Topics on analysis in metric spaces. Oxford Lecture Series in Mathematics and its Applications, 25. Oxford University Press, Oxford, (2004). viii+133 pp. ISBN: 0-19-852938-4

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestovskiĭ, V. N.: Homogeneous manifolds with an intrinsic metric. II. (Russian) Sibirsk. Mat. Zh. 30 (1989), no. 2, 14–28, 225; translation in Siberian Math. J. 30 (1989), no. 2, 180-191

  6. Berestovskiĭ, V.N., Guijarro, L.: A metric characterization of Riemannian Submersions. Ann. Glob. Anal. Geom. 18, 577–588 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI (2001). xiv+415 pp. ISBN: 0-8218-2129-6

  8. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Folland, G.: Real analysis. Modern techniques and their applications. Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. Wiley, New York (1999). xvi+386 pp. ISBN: 0-471-31716-0

  11. Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. Math. (2) 136(2), 253–333 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukaya, K., Yamaguchi, T.: Isometry groups of singular spaces. Math. Z. 216(1), 31–44 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galaz-Garcia, F., Guijarro, L.: Isometry groups of Alexandrov spaces. Bull. Lond. Math. Soc. 45(3), 567–579 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gigli, N., Pasqualetto, E.: Behaviour of the reference measure on \(RCD\)-spaces under charts, preprint, arXiv:1607.05188 [math.DG]

  15. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236 (2015), no. 1113, vi+91 pp. ISBN: 978-1-4704-1420-7

  16. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Gigli, N., Mondino, A., Rajala, T.: Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. J. Reine Angew. Math. 705, 233–244 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Gigli, N., Rajala, T., Sturm, K.-T.: Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below. J. Geom. Anal. 26(4), 2914–2929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  20. Hurewicz, W., Wallman, H.: Dimension Theory, Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  21. Kell, M., Mondino, A.: On the volume measure of non-smooth spaces with Ricci curvature bounded below, Annali della Scuola Normale Superiore di Pisa, to appear

  22. Kobayashi, S.: Transformation Groups in Differential Geometry, Reprint of the, 1972nd edn. Classics in Mathematics. Springer, Berlin (1995)

  23. Lott, J.: Optimal transport and Ricci curvature for metric-measure spaces, Surveys in differential geometry. Vol. XI, 229–257, Surv. Differ. Geom., 11, Int. Press, Somerville (2007)

  24. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mondino, A., Naber, A.: Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds I , arXiv:1405.2222v2 [math.DG]

  26. Montgomery, R..: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence (2002). xx+259 pp. ISBN: 0–8218–1391–9

  27. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. (2) 40(2), 400–416 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  28. Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. (2) 73, 295–323 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pears, A.R.: Dimension theory of general spaces. Cambridge University Press, Cambridge (1975). xii+428 pp

  30. Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong \(CD(K,\infty )-\)spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 831–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sosa, G.: The isometry group of an \(RCD^*\)–space is Lie, preprint, arXiv:1609.02098v2 (2016)

  32. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Dantzig, D., van der Waerden, B.L.: Über metrisch homogene Räume. Abh. Math. Sem. Univ. Hamburg 6, 374376 (1928). (German)

  35. Villani, C.: Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer, Berlin (2009). xxii+973 pp. ISBN: 978-3-540-71049-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Guijarro.

Additional information

L. Guijarro and J. Santos-Rodríguez were supported by research Grants MTM2014-57769-3-P (MINECO) and ICMAT Severo Ochoa Project SEV-2015-0554 (MINECO). J. Santos-Rodríguez was supported by a Ph.D. Scholarship awarded by Conacyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guijarro, L., Santos-Rodríguez, J. On the isometry group of \(RCD^*(K,N)\)-spaces. manuscripta math. 158, 441–461 (2019). https://doi.org/10.1007/s00229-018-1010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1010-7

Mathematics Subject Classification

Navigation