Skip to main content
Log in

Effect of Al2O3 Particles on Bond Strength in the Roll Bonding Process of Al-1050 Bi-Layers

  • THEORY AND TECHNOLOGY OF FORMING PROCESS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Aluminum alloy 1050 strips are roll-bonded with interlayer Al2O3 particles. The effect of rolling parameters on the bond strength, such as the content of Al2O3 particles, plastic deformation, and rolling temperature are investigated by peel test. It is established that higher bond strength can be obtained by increasing the rolling temperature, reducing the thickness, and decreasing the alumina content. The peeling surface of samples versus alumina content is characterized by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. K. H. W. Seah, J. Hemanth, and S. C. Sharma, “Effect of high-rate heat transfer during casting on the strength, hardness and wear behaviour of aluminium-quartz particulate metal matrix composites,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 217, No. 5, 651–659 (2003).

    Article  Google Scholar 

  2. S. V. Prasad and R. Asthana, “Aluminum metal-matrix composites for automotive applications: Tribological considerations,” Tribol. Letters, 17, No. 3, 445–453 (2004).

    Article  Google Scholar 

  3. M. Sedighi, P. Farhadipour, and M. Heydari vini, “Mechanical properties and microstructural evolution of bimetal 1050/Al2O3/5083 composites fabricated by warm accumulative roll bonding,” JOM, 68, No.12, 3193–3200 (2016).

    Article  Google Scholar 

  4. M. Alizadeh, “Effects of temperature and B4C content on the bonding properties of roll-bonded aluminum strips,” J. Mater. Sci., 47, No. 11, 4689–4695 (2012).

    Article  Google Scholar 

  5. O. Emadinia, S. Simões, F. Viana, et al., “Cold rolled versus sputtered Ni/Ti multilayers for reactionassisted diffusion bonding,” Weld. World, 60, No. 2, 337–344 (2016).

    Article  Google Scholar 

  6. H. Alvandi and K. Farmanesh, “Microstructural and mechanical properties of nano/ultra-fine structured 7075 aluminum alloys by accumulative roll-bonding process,” Proc. Mater. Sci.., 11, 17–23 (2015).

    Article  Google Scholar 

  7. V. Jindal, V. C. Srivastava, and R. N. Ghosh, “Development of IF steel–Al multilayer composite by repetitive roll bonding and annealing process,” Mater. Sci. Technol., 24, No. 7, 798–802 (2008).

    Article  Google Scholar 

  8. M. Eizadjou, H. D. Manesh, and K. Janghorban, “Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB,” J. Alloys Comp., 474, Nos. 1–2, 406–415 (2009).

  9. R. Jamaati and M. R. Toroghinejad, “The role of surface preparation parameters on cold roll bonding of aluminum strips,” J. Mater. Eng. Perform., 20, No. 2, 191–197 (2011).

    Article  Google Scholar 

  10. M. Reihanian, F. K. Hadadian, and M. H. Paydar, “Fabrication of Al–2 vol.% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): An investigation of the microstructure and mechanical properties,” Mater. Sci. Eng.: A, 607, 188–196 (2014).

  11. M. Abbasi and M. R. Toroghinejad, “Effects of processing parameters on the bond strength of Cu/Cu rollbonded strips,” J. Mater. Proc. Technol., 210, No. 3, 560–563 (2010).

    Article  Google Scholar 

  12. K. S. Suresh, S. Sinha, A. Chaudhary, and S. Suwas, “Development of microstructure and texture in Copper during warm accumulative roll bonding,” Mater. Character., 70, 74–82 (2012).

    Article  Google Scholar 

  13. M. Eizadjou, H. D. Manesh, and K. Janghorban, “Mechanism of warm and cold roll bonding of aluminum alloy strips,” Mater. Design, 30, No. 10, 4156–4161 (2009).

    Article  Google Scholar 

  14. S. Attar, M. Nagaral, H. N. Reddappa, and V. Auradi, “Effect of B4C particulates addition on wear properties of Al7025 alloy composites,” Am. J. Mater. Sci., 5(3C), 53–57 (2015).

    Google Scholar 

  15. M. Hosseini and H. Danesh Manesh, “Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding,” Mater. Design, 81,122–132 (2015).

    Article  Google Scholar 

  16. P. Farhadipour, M. Sedighi, and M. Heydari vini, “Using warm accumulative roll bonding method to produce Al–Al2O3 metal matrix composite,” Proc. Inst. Mech. Eng. Part B: J. Eng. Manufact., 231, No. 5, 889–896 (2017).

    Article  Google Scholar 

  17. A. Fattah-Alhosseini, A. Naseri, and M. H. Alemi, “Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process,” J. Manufact. Proc., 22, 120–126 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heydari Vini.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 56, Nos. 5–6 (515), pp. 3–9, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari Vini, M., Sedighi, M. & Farhadipour, P. Effect of Al2O3 Particles on Bond Strength in the Roll Bonding Process of Al-1050 Bi-Layers. Powder Metall Met Ceram 56, 239–244 (2017). https://doi.org/10.1007/s11106-017-9891-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9891-7

Keywords

Navigation