Skip to main content
Log in

Effect of Cold Rolling Parameters on Bond Strength of Ti Particle Embedded Al Strips

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Bond strength of cold roll bonded Al layers with and without Ti particles was studied. The effect of particle’s content that was placed between aluminium sheets and rolling reduction on weld efficiency and bonding was studied. Peel test was used to measure the adhesive strength between the bonded Al strips. The weld efficiency \(\eta\) of the roll bonding process was calculated. The results showed that the weld efficiency in the presence of Ti is lower than that in the absence of Ti. The surface conditions of the peeled surfaces were inspected by scanning electron microscopy. It could be concluded that by enhancing the rolling reduction up to 70%, the bonded area on the interface is increased and bonds with higher strength are produced. However, the addition of Ti particles leads to reduction of the bonded area and bond strength. Also, presence of Ti powders up to 0.5 wt%, lead to the increase of threshold deformation to 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pan D, Gao K, and Yu J, Mater Sci Technol 5 (1989) 934.

    Article  CAS  Google Scholar 

  2. Lukaschkin N D, Borissow A P, and Elrikh A I, J Mater Proc Technol 66 (1997) 246.

    Article  Google Scholar 

  3. Wu H Y, Lee S, and Wang J Y, J Mater Proc Technol 75 (1998) 173.

    Article  Google Scholar 

  4. Manesh H D and Taheri A K, J Mater Sci Technol 20 (2004) 1064.

    Article  CAS  Google Scholar 

  5. Le H R, Stucliffe M P F, Wang P Z, Burstein G T, Acta Mater 52 (2004) 911.

    Article  CAS  Google Scholar 

  6. Bay N, Metal Construct 18 (1986) 486.

    Google Scholar 

  7. Topic I, Höppel H W, and Göken M, Int J Mater Res 98 (2007) 320.

    Article  CAS  Google Scholar 

  8. Vaidyanath L R, and Milner D R, Br Weld J 7 (1960) 1.

    Google Scholar 

  9. Vaidyanath L R, Nicholas M G, and Milner D R, Br Weld J 6 (1959) 13.

    Google Scholar 

  10. Wright P K, Snow D A, and Tay C K, Met Technol 5 (1978) 24.

    Article  Google Scholar 

  11. Mohamed H A, and Washburn J, Weld J 30 (1975) 2.

    Google Scholar 

  12. Cave J A, and Williams J D, J Inst Met (Lond) 101 (1973) 203.

    Google Scholar 

  13. Zhang W, and Bay N, Weld J 32 (1997) 417s.

    Google Scholar 

  14. Zhang W, Bay N, and Wanheim T, CIRP Ann Manuf Technol 41 (1992) 293.

    Article  Google Scholar 

  15. Sherwood W C, and Milner D R, J Jpn Inst Met 97 (1969) 1.

    CAS  Google Scholar 

  16. McEwan K J B, and Miller D R, Br Weld J (1962) 406.

  17. Eizadjou M, Manesh H D, and Janghorban K, Mater Des 29 (2008) 909.

    Article  CAS  Google Scholar 

  18. Manesh H D, and Taheri A K, Mater Des 24 (2003) 617.

    Article  Google Scholar 

  19. Butlin J, and Mackay C A, Sheet Metal Ind (1979) 1063.

  20. Alizadeh M and Paydar M H, Mater Des 30 (2009) 82.

    Article  CAS  Google Scholar 

  21. Lu C, Tieu K, and Wexler D, J Mater Process Technol 209 (2009) 4830.

    Article  CAS  Google Scholar 

  22. Jia N, Zhu M W, Zheng Y R, He T, and Zhao X, Acta Metall Sin Eng Lett 28 (2015) 600.

    Article  CAS  Google Scholar 

  23. Yazdani Z, Toroghinejad M R, Edris H, Ngan A H W, J Alloys Compd 747 (2018) 217.

    Article  CAS  Google Scholar 

  24. Jamaati R, and Toroghinejad M R, J Mater Eng Perform 20 (2011) 191.

    Article  CAS  Google Scholar 

  25. Yan H, and Lenard J, Mater Sci Eng A 385 (2004) 419.

    Article  Google Scholar 

  26. Madaah-Hosseini H R, and Kokabi A H, Mater Sci Eng A A335 (2002) 186.

    Article  Google Scholar 

  27. Soltani M A, Jamaati R, and Toroghinejad M R, Mater Sci Eng A 550 (2012) 367.

    Article  CAS  Google Scholar 

  28. Bay N, Met Constr 18 (1986) 486.

    Google Scholar 

  29. Li L, Nagai K, and Yin F, Sci Technol Adv Mater 9 (2008) 11.

    CAS  Google Scholar 

  30. Strijbos S, Ceramurgia Int 6 (1980) 119.

    Article  CAS  Google Scholar 

  31. Chaudhari G P, and Acoff V, Compos Sci Technol 69 (2009) 1667.

    Article  CAS  Google Scholar 

  32. Tzou G Y, Tieu A K, Huang M N, Lin C Y, and We E Y, J Mater Process Technol 125 (2002) 664.

    Article  Google Scholar 

  33. Yong J, Dashu P, Dong L, and Luoxing L, J Mater Process Technol 105 (2000) 32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Yazdani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, Z., Toroghinejad, M.R., Edris, H. et al. Effect of Cold Rolling Parameters on Bond Strength of Ti Particle Embedded Al Strips. Trans Indian Inst Met 71, 2497–2504 (2018). https://doi.org/10.1007/s12666-018-1380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1380-2

Keywords

Navigation