Skip to main content
Log in

Proteome Analysis of Roots in Cucumber Seedlings Under Iso-Osmotic NaCl and Ca(NO3)2 Stresses

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The growth and productivity of cucumber are severely affected by salinity. To understand the complex salt response mechanism, the physiological and biochemical responses of cucumber seedlings to iso-osmotic NaCl and Ca(NO3)2 stresses were investigated. In this study, the biomass was significantly decreased under iso-osmotic NaCl and Ca(NO3)2 stresses, and the inhibitory effect of Ca(NO3)2 stress was less than that of NaCl stress. The soluble protein contents were increased under Ca(NO3)2 stress, whereas they were decreased after 6 days of NaCl stress. A sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that there were 14 differentially expressed protein bands in roots under iso-osmotic NaCl and Ca(NO3)2 stresses at 0, 3, 6, and 9 days, and seven protein bands were little expressed under NaCl stress at 6 and 9 days. Based on these results, 2-D gel electrophoresis was used to separate cucumber root proteins in response to iso-osmotic NaCl and Ca(NO3)2 stresses at 3 days. A total of 43 protein spots changed under salt stress. Of these proteins, 33 were successfully identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography electro-spray ionization tandem mass spectrometry (LC-ESI-MS/MS) and categorized into classes, including those corresponding to antioxidants and defense-related proteins and energy and metabolism. The functions of the significantly differentially expressed root proteins were analyzed, which may facilitate a better understanding of different salt response mechanisms, and we suggest that cucumber seedlings showed a more powerful ability to resist Ca(NO3)2 stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade SLA, Patridge EV, Ferry JG, Einsle O (2007) Crystal structure of the NADH:quinone oxidoreductase WrbA from Escherichia coli. J Bacteriol 189(24):9101–9107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA, Unver T, Turktas M (2013) Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol 83:89–103. doi:10.1007/s11103-013-0024-5

    Article  CAS  PubMed  Google Scholar 

  • Callls J (1995) Regulation of protein degradation. Plant Cell 7:845–857

    Article  Google Scholar 

  • Debouba M, Gouia H, Suzuki A, Ghorbel MH (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato Lycopersicon esculentum seedlings. Plant Physiol 163:1247–1258

  • Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochemie 86(8):509–518

    Article  CAS  Google Scholar 

  • Donnini S, Prinsi B, Negri A, Vigani G, Espen L, Zocchi G (2010) Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots. BMC Plant Biol 10:268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    Article  CAS  PubMed  Google Scholar 

  • Du CX, Fan HF, Guo SR, Tezuka T, Li J (2010) Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 71(13):1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Hershey JWB (1984) Evaluation of isoelectric focusing running conditions during two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis: variation of gel patterns with changing conditions and optimized isoelectric focusing conditions. Anal Biochem 138:144–155

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf H, Zuily-Fodil Y, Gareil M, d’Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M (2007) Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under pH. Plant Sci 172:1157–1165

    Article  CAS  Google Scholar 

  • Gong ZZ, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S (2001) Genes that are uniquely stress-regulated in salt overly sensitive (SOS) mutants. Plant Physiol 126:363–375

  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31(8):455–464

    Article  CAS  PubMed  Google Scholar 

  • Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    CAS  PubMed  Google Scholar 

  • Huang XM, Song SQ, Fu JR (2006) Changes in water state and soluble protein contents of wampee axes during inducing desiccation tolerance by sucrose preculture. J Plant Physiol Mol Biol 32:245–251

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikehata K, Buchanan ID, Pickard MA, Smith DW (2005) Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment. Bioresour Technol 96:1758–1770

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Irsigler AST, Costa MDL, Zhang R, Reis PAB, Dewey RE, Boston RS, Fontes EPB (2007) Expression profiling on soybean leaves reveals integration of ER- and osmotie-stress pathways. BMC Genomie 8:431

    Article  Google Scholar 

  • Kim CY, Han M, Park CJ, Jeon JS (2014) Differential role for BiP3 in rice immune receptor-mediated resistance. J Korean Soc Appl Biol Chem 57:539–542

    Article  Google Scholar 

  • Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structures and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182

    Article  CAS  PubMed  Google Scholar 

  • Konishi H, Kitano H, Komatsu S (2005) Identification of rice root proteins regulated by gibberellin using proteome analysis. Plant Cell Environ 28:328–339

    Article  CAS  Google Scholar 

  • Kunstmann B, Osiewacz HD (2008) Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 7:651–662

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH (2009) Chilling stress induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li B, He LZ, Guo SR, Li J, Yang YJ, Yan B, Sun J, Li J (2013) Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem 67:7–14

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Chang TS, Hsu YK, Deyholos MK (2014) Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 14:1759–1775

    Article  PubMed  Google Scholar 

  • Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    Article  CAS  PubMed  Google Scholar 

  • Martz F, Maury S, Pinçon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3- O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Ogawa K (2008) New insight into the Calvin cycle regulation glutathionylation of fructose bisphosphate aldolase in response to illumination. Photosynthesis energy from the sun. Springer, Netherlands, pp 872–874

    Google Scholar 

  • Mckersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mihara H, Hidese R, Yamane M, Kurihara T, Esaki N (2008) The iscS gene deficiency affects the expression of pyrimidine metabolism genes. Biochem Biophys Res Commun 372:407–411

    Article  CAS  PubMed  Google Scholar 

  • Mittenberg AG, Moiseeva TN, Barlev NA (2008) The role of proteasomes in transcription and their regulation by post-translational modifications. Front Biosci 13:7184–7192

    Article  CAS  PubMed  Google Scholar 

  • Niini SS, Tarkka MK, Raudaskoski M (1996) Tubulin and actin protein patterns in scots pine (Pinus sylvestris) roots and developing ectomycorrhiza with Suillas bovines. Physiol Plant 96:186–192

    Article  CAS  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol 126:973–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007

    PubMed Central  PubMed  Google Scholar 

  • Oh MW, Roy SK, Kamal AHM et al (2014) Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41:671–681

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JC, Schaller D, Ravier F et al (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18:150–155

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:1–15

    Article  Google Scholar 

  • Steppuhn H, Raney J (2005) Emergence, height, and yield of canola and barley grown in saline root zones. Can J Plant Sci 85:815–827

    Article  Google Scholar 

  • Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337(6206):473–475

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tong H (2012) The damage mechanism of cucumber seedlings under iso-osmotic Ca(NO3)2 and NaCl stress. Unpublished master dissertation, Nanjing Agricultural University

  • Valente MAS, Faria JAQA, Soares-Ramos JRL et al (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M et al (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641

    Article  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK et al (2010) Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ 33:211–222

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Sun J, Guo SR, Yang YJ, Sun HZ (2012) Effects of calcium on growth and expression of soluble protein in cucumber seedlings under salt stress. Jiangsu J Agric Sci 28(4):841–845

    Google Scholar 

  • Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7(5):737–749

    Article  CAS  PubMed  Google Scholar 

  • Yu HY, Li TX, Zhou JM (2005) Secondary salinization of greenhouse soil and its effects on soil properties. Soils 37:581–586

    CAS  Google Scholar 

  • Zhang JJ, Duan ZQ (2011) Greenhouse soil secondary salinization causes harm their classification and grading standards research progress. Soils 43(3):361–366

    CAS  Google Scholar 

  • Zhou S, Sauvé R, Thannhauser TW (2009) Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 60:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Klemic JF, Chang S et al (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26:283–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 31471869, 31401919, and 31272209), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the China Earmarked Fund for Modern Agro-industry Technology Research System (CARS-25-C-03), and the China Postdoctoral Science Foundation Funded Project (2014M561665) and sponsored by the Research Fund for the Doctoral Program of Higher Education (20130097120015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiRong Guo.

Additional information

QiaoSai Shao and Sheng Shu contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Q., Shu, S., Du, J. et al. Proteome Analysis of Roots in Cucumber Seedlings Under Iso-Osmotic NaCl and Ca(NO3)2 Stresses. Plant Mol Biol Rep 34, 303–317 (2016). https://doi.org/10.1007/s11105-015-0916-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0916-4

Keywords

Navigation