Skip to main content
Log in

Changes in soil microbiota alter root exudation and rhizosphere pH of the gypsum endemic Ononis tridentata L.

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plants living on gypsum are adapted to uptake nutrients in extremely poor alkaline soils. Under such extreme conditions, processes affecting the chemical conditions of the rhizosphere may be crucial for plant survival and growth. Rhizosphere acidification in plants living on gypsum soils has never been reported before and the effect of root exudation and microbes on the rhizosphere pH remains undescribed.

Methods

In this study we cultivated seeds of the gypsum specialist Ononis tridentata in rhizoboxes with natural gypsum soil and with gypsum soil with reduced microbiota, and monitored changes in the rhizosphere pH with planar optodes coupled to a calibrated image recording system. Soil microbial life was estimated with PLFAs analyses and root exudation was characterised.

Results

The reduced microbiota treatment decreased both fungal and microbial presence. Plants grown in natural soil, with unaltered presence of soil microbiota, had lower rhizosphere pH. However, in the microbial-reduced treatment we found higher root exudation of several organic acids and alcohols such as malonic and isocitric acids and sorbitol-mannitol. Interestingly, plant biomass was not significantly altered by treatments.

Conclusion

The natural soil microbiota contributed to acidify alkaline gypsum soils, likely improving nutrient availability. However, O. tridentata seedlings grown in microbial-reduced soils seemed to compensate the effects of microbes through increased root exudation, attaining similar growth both in natural and microbial-reduced soils. These seedlings seemed to be adapted to soil where microbial abundance fluctuates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alguacil MM, Roldán A, Torres MP (2009) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11(10):2649–2659

    Article  CAS  PubMed  Google Scholar 

  • Arvieu JC, Leprince F, Plassard C (2003) Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Ann For Sci 60(8):815–821

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35(9):1183–1192

    Article  CAS  Google Scholar 

  • Boudot JP (1992) Relative efficiency of complexed aluminum noncrystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma 52(1–2):29–39

    Article  CAS  Google Scholar 

  • Bilyera N, Hummel C, Daudin G, Santangeli M, Zhang X, Santner J et al (2022) Co-localised phosphorus mobilization processes in the rhizosphere of field-grown maize jointly contribute to plant nutrition. Soil Biol Biochem 165:108497

    Article  CAS  Google Scholar 

  • Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130

    Article  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed Central  PubMed  Google Scholar 

  • Casby-Horton S, Herrero J, Rolong NA (2015) Gypsum soils – their morphology, classification, function, and landscapes. Adv Agron 130:231–290

  • Cera A, Montserrat-Martí G, Ferrio JP, Drenovsky RE, Palacio S (2021a) Gypsum-exclusive plants accumulate more leaf S than non-exclusive species both in and off gypsum. Environ Exp Botan 182:104294

  • Cera A, Duplat E, Montserrat-Martí G, Gómez-Bolea A, Rodríguez-Echeverría S, Palacio S (2021b) Seasonal variation in AMF colonisation, soil and plant nutrient content in gypsum specialist and generalist species growing in P-poor soils. Plant Soil 468(1):509–524

  • Cera A, Montserrat-Martí G, Palacio S (2023) Nutritional strategy underlying plant specialization to gypsum soils. AoB Plants 15(4):lad041. https://doi.org/10.1093/aobpla/plad041

    Article  CAS  Google Scholar 

  • Chambers JM, Hastie TJ (2017) Statistical models. In Statistical models in S. Routledge, pp 13–44

    Chapter  Google Scholar 

  • Chiang PN, Wang MK, Chiu CY, Chou SY (2006) Effects of cadmium amendments on low-molecularweight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol: An International Journal 21(5):479–488

    Article  CAS  Google Scholar 

  • Coyne MS, Mikkelsen R, Mineralization S (2015) Soil microorganisms contribute to plant nutrition and root health. Better Crops 99(1):18–20

    Google Scholar 

  • de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L (2020) An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J 103(3):951–964

    Article  PubMed  Google Scholar 

  • de la Puente L, Pedro Ferrio J, Palacio S (2022) Disentangling water sources in a gypsum plant community. Gypsum crystallization water is a key source of water for shallow-rooted plants. Ann Bot 129(1):87–100

    Article  PubMed  Google Scholar 

  • Doubková P, Suda J, Sudová R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant and Soil 345(1):325–338

    Article  Google Scholar 

  • Escudero A, Palacio S, MaFungi stre FT, Luzuriaga AL (2015) Plant life on gypsum: a review of its multiple facets. Biol Rev 90(1):1–18

    Article  PubMed  Google Scholar 

  • Hartig F (2018) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R Packag version 020

    Google Scholar 

  • Food and Agriculture Organization of the United Nations, Soils Resources, & Conservation Service (FAO) (1990) Management of Gypseous Soils. Food and Agriculture Organization, Rome

    Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625

    Article  Google Scholar 

  • Hartmann A, Schmid M, Tuinen Dv et al (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  • Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D et al (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10(11):3082–3092

    Article  CAS  PubMed  Google Scholar 

  • Herrero J, Porta J (2000) The terminology and the concepts of gypsum-rich soils. Geoderma 96(1–2):47–61

    Article  Google Scholar 

  • Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D (2020) Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci 117(20):10681–10687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichimura K, Yoshioka S, Yamada T (2016) Exogenous mannitol treatment stimulates bud development and extends vase life of cut snapdragon flowers. Postharvest Biol Technol 113:20–28

    Article  CAS  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones DL, Healey JR, Willet VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants – an important N uptake pathway?. Soil Biol Biochem 37:413–423

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55(1):459–493

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23(2):95–103

    Article  PubMed  Google Scholar 

  • Läuchli A, Grattan SR (2012) Soil pH extremes. In: Plant stress physiology. CABI, Wallingford UK, pp 194–209

    Chapter  Google Scholar 

  • Lyubenova L, Kuhn AJ, Höltkemeier A, Schröder P (2013) Root exudation pattern of Typha latifolia L. plants after copper exposure. Plant Soil 370(1):187–195

    Article  CAS  Google Scholar 

  • Ma L, Yang L, Liu W, Zhang Y, Zhou Q, Wu Z, He F (2021a) Effects of root exudates on rhizosphere bacteria and nutrient removal in pond-ditch circulation systems (PDCSs) for rural wastewater treatment. Sci Total Environ 785:147282

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Liu Y, Shen W, Kuzyakov Y (2021b) Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: coupling zymography with planar optodes. Appl Soil Ecol 167:104029

    Article  Google Scholar 

  • Marschener HJFCR (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crop Res 56(1–2):203–207

    Article  Google Scholar 

  • McKinley VL, Peacock AD, White DC (2005) Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem 37:1946–1958

    Article  CAS  Google Scholar 

  • McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24(2):117–132

    Article  Google Scholar 

  • Menéndez-Serra M, Triadó-Margarit X, Castañeda C, Herrero J, Casamayor EO (2019) Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). Sci Total Environ 650:343–353

    Article  PubMed  Google Scholar 

  • Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in Central Mexico. J Veg Sci 3:429–438

  • Minervini F, Celano G, Lattanzi A, Tedone L, De Mastro G, Gobbetti M, De Angelis M (2015) Lactic acid bacteria in durum wheat flour are endophytic components of the plant during its entire life cycle. Appl Environ Microbiol 81(19):6736–6748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35(11):3075–3084

    Article  CAS  Google Scholar 

  • Molefe RR, Amoo AE, Babalola OO (2023) Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis 90:231–239. https://doi.org/10.1007/s13199-023-00941-9

    Article  Google Scholar 

  • Moore MJ, Mota JF, Douglas NA, Flores-Olvera H, Ochoterena H (2014) The ecology, assembly, and evolution of gypsophile floras

  • Mota JF, Sola AJ, Dana ED (2003) Plant succession in abandoned gypsum quarries in SE Spain. Phytocoenologia 33:13–28

    Article  Google Scholar 

  • Mota JF, Sánchez-Gómez P, Guirado JS (2011) Diversidad vegetal de las yeseras ibéricas. ADIF-Mediterráneo Asesores Consultores, Almería

    Google Scholar 

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York, pp 115–120

    Google Scholar 

  • Neumann G, Römheld V (2000) The release of root exudates as affected by the plant’s physiological status. The Rhizosphere Biochemistry and organic substances at the soil-plant interface. pp 41–93

    Google Scholar 

  • Neumann G, Römheld V (2012) Rhizosphere chemistry in relation to plant nutrition. In Marschner’s mineral nutrition of higher plants. Academic Press, pp 347–368

    Chapter  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR et al (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166. https://doi.org/10.1007/s00253-018-9556-6

    Article  CAS  PubMed  Google Scholar 

  • Oliveros-Bastidas ADJ, Macias FA, Fernández CC, Marín D, Molinillo JM (2009) Root exudates and their relevance to the allelopatic interactions. Química Nova 32:198–213

    Article  CAS  Google Scholar 

  • Palacio S, Johnson D, Escudero A, Montserrat-Martí G (2012) Root colonisation by AM fungi differs between gypsum specialist and non-specialist plants: links to the gypsophile behaviour. J Arid Environ 76:128–132

    Article  Google Scholar 

  • Royston P (1995) Remark AS R94: A remark on algorithm AS 181: the W test for normality. Appl Stat 44:547–551. https://doi.org/10.2307/2986146

    Article  Google Scholar 

  • Palacio S, Azorín J, Montserrat-Martí G, Ferrio JP (2014) The crystallization water of gypsum rocks is a relevant water source for plants. Nat Commun 5(1):4660

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Sharma R, Rahi P, Karthikeyan N (2015) Role of microorganisms in plant nutrition and health. Nutr Efficiency: Basics Adv:125–161

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rigou L, Mignard E, Plassard C, Arvieu JC, Remy JC (1995) Influence of ectomycorrhizal infection on the rhizosphere pH around roots of maritime pine (Pinus pinaster Soland in Ait.). New Phytol 130(1):141–147

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52(1):527–560

    Article  CAS  Google Scholar 

  • Sánchez AM, Albert MJ, Rodríguez M, Escudero A (2012) Extended flowering in a Mediterranean shrub: Seasonal variability in seed quality and quantity. Flora Morphol Distrib Funct Ecol Plants 207(11):821–827

    Article  Google Scholar 

  • Schechter SP, Bruns TD (2008) Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages. Mol Ecol 17(13):3198–3210

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77(3):600–610. https://doi.org/10.1111/j.1574-6941.2011.01150.x

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, UK

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and fungi stablished knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1):3–20

  • Sokolova TA (2020) Low-molecular-weight organic acids in soils: sources, composition, concentrations, and functions: a review. Eurasian Soil Sci 53:580–594

    Article  CAS  Google Scholar 

  • Ste-Marie C, Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31(11):1579–1589

    Article  CAS  Google Scholar 

  • Teodoro GS, Lambers H, Nascimento DL, de Britto Costa P, Flores-Borges DN, Abrahão A et al (2019) Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. Funct Ecol 33(5):762–773

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination

  • Welch BL (1951) On the comparison of several mean values: an alternative approach. Biometrika 38:330–336. https://doi.org/10.2307/2332579

    Article  Google Scholar 

  • White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial diversity by signature biomarker analysis. J Ind Microbiol 17:185–196

    CAS  Google Scholar 

  • Willers C, Jansen van Rensburg PJ, Claassens S (2015) Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. J Appl Microbiol 119(5):1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, de Vries FT (2022) Root functional traits explain root exudation rate and composition across a range of grassland species. J Ecol 110(1):21–33

    Article  Google Scholar 

  • Williams A, de Vries FT (2020) Plant root exudation under drought: implications for ecosystem functioning. New Phytol 225(5):1899–1905

    Article  PubMed  Google Scholar 

  • Xia JH, Roberts JK (1994) Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiol 105(2):651–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan F, Zhu Y, Muller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129(1):50–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu HL, Lin ZA, Li YT, Yuan L, Zhao BQ (2014) Effects of spraying low molecular organic compounds on growth and nutrients uptake of rape (Brassica Chinensis L.). Journal of Plant Nutrition and Fertilizers 20(6):1560–1568

    CAS  Google Scholar 

  • Yu H, Shao W, Xu G, Xie N, Yang X, Gao D, Si P (2023) Soil amendment with sorbitol and mannitol changes the soil microbial community and its enzymatic activities. J Soils Sediments 23(4):1857–1876

    Article  CAS  Google Scholar 

  • Zhang S, Cui S, Gong X, Chang L, Jia S, Yang X, Wu D, Zhang X (2016) Effects of gamma irradiation on soil biological communities and C and N pools in a clay loam soil. Appl Soil Ecol 108:352–360

    Article  Google Scholar 

  • Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q et al (2021) Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ 44(2):613–628

    Article  CAS  PubMed  Google Scholar 

  • Zhu SG, Cheng ZG, Wang J, Gong DS, Ullah F, Tao HY et al (2023) Soil phosphorus availability and utilization are mediated by plant facilitation via rhizosphere interactions in an intercropping system. Eur J Agron 142:126679

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Revilla for help with the rhizoboxes design, M. Perez-Serrano for assistance during harvesting, Gregor Liebsch for the support with VisiSens™ ScientifiCal Software management, A. Cera for useful comments on the results of the manuscript and V. Temperton and four anonymous referees for valuable comments to earlier versions of the manuscript.

Funding

This work was supported by the Spanish Government [MICINN, CGL2015–71360-P and PID2019-111159GB-C31], and by European Union’s Horizon 2020 [H2020-MSCA-RISE-777803 GYPWORLD]. LP was funded by fellowship FSE-Aragón 2014–2020 by Gobierno de Aragón, Spain; J.M.I. was supported by Project “CLU-2019-05 – IRNASA/CSIC Unit of Excellence”, funded by the Junta de Castilla y León and co-financed by the European Union (ERDF “Europe drives our growth”), JPF and SP were supported by Reference Groups S74_23R and E03_23R, respectively (Gobierno de Aragón, Spain).

Author information

Authors and Affiliations

Authors

Contributions

L.P. and L.E wrote the manuscript and prepared figures and tables, J.M.I interpreted PLFAs analysis and prepared the Figure associated; S.P & J.P.F designed the study and revised the manuscript critically, contributing with intellectual contents.

Corresponding author

Correspondence to Laura de la Puente.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of interest

The authors declare that there is no conflict of interest for this study. The study was conducted in the absence of any commercial or financial relationship that could be constructed as a potential conflict of interest.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 321 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Puente, L., Echevarría, L., Igual, J.M. et al. Changes in soil microbiota alter root exudation and rhizosphere pH of the gypsum endemic Ononis tridentata L.. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06691-x

Keywords

Navigation