Skip to main content

Advertisement

Log in

Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Plant-derived metabolites play a crucial role in mediating plant–microbe interactions affecting plant development, health and ability to withstand biotic and abiotic stresses. However, how the key plant metabolites, e.g., flavonoids and fatty acids secreted by roots, regulate soil microbial communities to promote plant phosphorus (P) nutrition, growth and development remains unclear.

Methods

We determined whether the addition of different concentrations (0, 50 or 500 μmol kg−1) of myristic acid (fatty acid), quercetin, naringenin or luteolin (flavonoids) to the soil to improved soil organic P utilization efficiency and enhanced plant growth by changing microbial community.

Results

Flavonoids could directly regulate rhizosphere bacterial community structure, with a significant increase in the relative abundance of Micrococcaceae and Nocardioidaceae by the addition of 50 μmol kg−1 of naringenin, luteolin, 500 μmol kg−1 of quercetin, naringenin or luteolin. The addition of myristic acid had weaker impact on bacterial community structure. The altered bacterial community structure lead to the increased alkaline phosphatase activity in the rhizosphere to promote the mineralization of organic P, which could facilitate plant growth and P uptake to different extents.

Conclusion

Our results indicate that the addition of flavonoids enhanced organic P mineralization by selecting individuals which secreted more phosphatases. These findings can provide guidance for effective manipulation of composition of plant-microbial communities to increase plant P nutrition and/or efficiency of use of P fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdel-Lateif K, Vaissayre V, Gherbi H, Verries C, Meudec E, Perrine-Walker F, Cheynier V, Svistoonoff S, Franche C, Bogusz D, Hocher V (2013) Silencing of the chalcone synthase gene in Casuarina glauca highlights the important role of flavonoids during nodulation. New Phytol 199:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Alguacil MM, Torres MP, Torrecillas E, Díaz G, Roldán A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Baltazar M, Correia S, Guinan KJ, Sujeeth N, Bragança R, Gonçalves B (2021) Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules 11:1096–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Bolo P, Kihara J, Mucheru-Muna M, Njeru EM, Kinyua M, Sommer R (2021) Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a Ferralsol. Geoderma 390:114962–114974

    Article  CAS  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fert Soils 48:123–149

    Article  CAS  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:508–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Jiang T, Liu YX, Liu H, Zhao T, Liu Z, Gan X, Hallab A, Wang X, He J, Ma Y, Zhang F, Jin T, Schranz ME, Wang Y, Bai Y, Wang G (2019) Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci 62:947–958

    Article  CAS  PubMed  Google Scholar 

  • Chen QL, Ding J, Zhu D, Hu HW, Delgado-Baquerizo M, Ma YB, He JZ, Zhu YG (2020) Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem 141:107686–107694

    Article  CAS  Google Scholar 

  • Chu Q, Zhang L, Zhou JW, Yuan LX, Chen FJ, Zhang FS, Feng G, Rengel Z (2020) Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant Soil 449:357–371

    Article  CAS  Google Scholar 

  • Del Valle I, Webster TM, Cheng HY, Thies JE, Kessler A, Miller MK, Ball ZT, MacKenzie KR, Masiello CA, Silberg JJ, Lehmann J (2020) Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Sci Adv 6:eaax8254

    Article  PubMed  PubMed Central  Google Scholar 

  • Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72:5069–5072

    Article  CAS  Google Scholar 

  • diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M (2020) Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 11:1–11

    Article  Google Scholar 

  • Duan S, Declerck S, Feng G, Zhang L (2023) Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon–phosphorus exchange at the peri-arbuscular space in Medicago truncatula. Environ Microbiol 25:867–879

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Evtushenko L, Ariskina E (2015) Nocardioidaceae, in Bergey’s Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Ed

  • Garbeva PV, Van Veen JA, Van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziani G, Cirillo A, Giannini P, Conti S, El-Nakhel C, Rouphael Y, Ritieni A, Di Vaio C (2022) Biostimulants improve plant growth and bioactive compounds of young olive trees under abiotic stress conditions. Agriculture 12:227–246

    Article  CAS  Google Scholar 

  • Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva S, Voges MJEEE, Sattely ES, Garrido-Oter R, Schulze-Lefert P (2020) Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28:825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hazard C, Gosling P, van Der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508

    Article  CAS  PubMed  Google Scholar 

  • He DX, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao CY, Wu XX, Zheng S, Morcillo RJL, Paré PW, Zhang H (2022) Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J 16:2622–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Igwe AN, Vannette RL (2019) Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils. Plant Soil 441:423–437

    Article  CAS  Google Scholar 

  • Jacoby R, Chen L, Schwier M, Koprivova A, Kopriva S (2020) Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research 9:151–158

    Article  CAS  Google Scholar 

  • Jiang YN, Wang WX, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Tripathi K, Rai AK, Cha-Um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol 77:5178–5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y, Ezawa T, Hayashi H, Kawaguchi M, Akiyama K (2019) Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat Microbiol 4:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Korenblum E, Massalha H, Aharoni A (2022) Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell 34:3168–3182

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Article  Google Scholar 

  • Li SL, Xu C, Wang J, Guo B, Yang L, Chen JN, Ding W (2017) Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum. Plant Soil 412:381–395

    Article  CAS  Google Scholar 

  • Liu S, Zhang X, Dungait JA, Quine TA, Razavi BS (2021) Rare microbial taxa rather than phoD gene abundance determine hotspots of alkaline phosphomonoesterase activity in the karst rhizosphere soil. Biol Fert Soils 57:257–268

    Article  Google Scholar 

  • Lu YQ, Wang EZ, Tang ZY, Rui JP, Li YL, Tang ZX, Dong WL, Liu XD, George TS, Song AL, Fan FL (2021) Roots and microbiome jointly drive the distributions of 17 phytohormones in the plant soil continuum in a phytohormone-specific manner. Plant Soil 470:153–165

    Article  Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Busse HJ, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria, in Bergey’s Manual of Systematic Bacteriology. Springer, New York

    Google Scholar 

  • Luginbuehl L, Menard G, Kurup S, Van Erp H, Radhakrishnan G, Breakspear A, Oldroyd G, Eastmond P (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44:93–101

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Neumann G (2006) Quantitative determination of acid phosphatase activity in the rhizosphere and on the root surface. In: Jones, D.L. (Eds.), 4.2 Biochemistry. In: Luster, J., Finlay, R. (Eds.), Handbook of Methods used in Rhizosphere Research Online Edition

  • Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Rüdiger P, Hans-Peter K, Michael G, Göker M (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950–4959

    Article  CAS  PubMed  Google Scholar 

  • Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K, Sugiyama A (2020) Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ 43:1036–1046

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington, USA

    Google Scholar 

  • Ortiz-Cornejo NL, Romero-Salas EA, Navarro-Noya YE, González-Zúñiga JC, Ramirez-Villanueva DA, Vásquez-Murrieta MS, Verhulst N, Govaerts B, Dendooven L, Luna-Guido M (2017) Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Appl Soil Ecol 119:417–427

    Article  Google Scholar 

  • Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-MolinaE VE (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacian under growth chamber conditions. Soil Biol Biochem 33:1927–1935

    Article  CAS  Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piche Y, Chenevert R (1993) Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 19:2317–2327

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Anderson IC, Antonovics J, Ballhausen MB, Bergmann J, Bielcik M, Chaudhary VB, Deveautour C, Grunfeld L, Hempel S, Lakovic M, Lammel DR, Lehmann A, Lehmann J, Leifheit EF, Liang Y, Li EQ, Lozano YM, Manntschke A, Mansour I, Oviatt P, Pinek L, Powell JR, Roy J, Ryo M, Sosa-Hernandez MA, Veresoglou SD, Wang DW, Yang GW, Zhang HY (2023) Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. New Phytol 227:1610–1614

    Article  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  CAS  PubMed  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre MJ, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    Article  CAS  Google Scholar 

  • Schoenau JJ, Huang WZ (1991) Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus. Commun Soil Sci Plan 22:465–492

    Article  CAS  Google Scholar 

  • Schütz V, Frindte K, Cui J, Zhang P, Hacquard S, Schulze-Lefert P, Knief C, Schulz M, Dörmann P (2021) Differential impact of plant secondary metabolites on the soil microbiota. Front Microbiol 12:666010–666027

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah A, Smith DL (2020) Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10:1209–1235

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staddon PL, Fitter AH, Graves JD (1999) Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biol 5:347–358

    Article  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsena RL, Bakkera PAHM, Feussner I, Pieterse CM (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. P Natl Acad Sci USA 115:E5213–E5222

    Article  CAS  Google Scholar 

  • Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J Microbiol Methods 50:155–164

    Article  CAS  PubMed  Google Scholar 

  • Sugiura Y, Akiyama R, Tanaka S, Yano K, Kameoka H, Marui S, Saito M, Kawaguchi M, Akiyama K, Saito K (2020) Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. P Natl Acad Sci USA 117:25779–25788

    Article  CAS  Google Scholar 

  • Szoboszlay M, White-Monsant A, Moe LA (2016) The effect of root exudate 7, 4′-dihydroxyflavone and naringenin on soil bacterial community structure. PLoS ONE 11:e0146555

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Tian BL, Pei YC, Huang W, Ding JQ, Siemann E (2021) Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J 15:1919–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclauxm FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, Clemente HS, Shapiro H, Van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. P Natl Acad Sci USA 110:20117–2012

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris

    Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207

    Article  CAS  PubMed  Google Scholar 

  • Wang GW, Jin ZX, Wang X, George TS, Feng G, Zhang L (2022a) Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Appl Soil Ecol 170:104274–104284

    Article  Google Scholar 

  • Wang GW, George TS, Pan QC, Feng G, Zhang L (2022b) Two isolates of Rhizophagus irregularis select different strategies for improving plants phosphorus uptake at moderate soil P availability. Geoderma 421:115910–115922

    Article  CAS  Google Scholar 

  • Wang GW, Jin ZX, George TS, Feng G, Zhang L (2023) Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol 238:2578–2593

    Article  CAS  PubMed  Google Scholar 

  • Yu P, He XM, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang XC, Deichmann M, Frey FP, Bresgen V, Li CJ, Razavi BS, Schaaf G, Wirén NV, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen XP, Hochholdinge F (2021) Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 7:481–499

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Peng Y, Zhou J, George TS, Feng G (2020) Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol Biochem 142:107724–107733

    Article  CAS  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (42277112) and Shandong Natural Science Foundation (ZR2021MC042). Timothy S. George contribution through The James Hutton Institute was supported by funds from the Rural and Environment Science and Analytical Services Division of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Jan Jansa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Duan, S., George, T.S. et al. Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure. Plant Soil 497, 503–522 (2024). https://doi.org/10.1007/s11104-023-06409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06409-5

Keywords

Navigation