Skip to main content
Log in

The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Iron (Fe) deficiency in plants is a common problem affecting agricultural production. Cadmium (Cd) is a toxic metal that can be taken up and transported within plants by transporters for divalent metals including Fe(II). The present study aims to investigate the functions of OsNRAMP2 (Natural Resistance-Associated Macrophage Protein 2) in the remobilization and distribution of Fe and Cd in rice.

Methods

The expression pattern of OsNRAMP2 was determined by quantitative real-time PCR and pOsNRAMP2::GUS assay. Knockout mutants of OsNRAMP2 were generated by using CRISPR/Cas9 gene editing. Localization of Fe in the vacuolar globoids of germinating seeds was imaged by high-resolution transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Distributions of Fe and Cd between different plant tissues were investigated in hydroponic and soil pot experiments.

Results

OsNRAMP2 was mainly expressed in the embryo of germinating seeds, roots, leaf sheaths and leaf blades. OsNRAMP2 was localized at the tonoplast. Knockout of OsNRAMP2 delayed seed germination and produced chlorotic seedling leaves. Remobilization of Fe stored in the protein storage vacuoles in the scutellum of germinating seeds was restricted in osnramp2 mutants compared with wild type. Expression of genes related to Fe uptake was enhanced in the seedlings of osnramp2 mutants. Knockout of OsNRAMP2 significantly decreased the distribution of Cd, but not Fe, from leaves and straws to rice grains.

Conclusions

OsNRAMP2 plays an important role in remobilizing vacuolar Fe during seed germination and affects translocation of Cd from vegetative tissues to rice grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akmakjian GZ, Riaz N, Guerinot ML (2021) Photoprotection during iron deficiency is mediated by the bHLH transcription factors PYE and ILR3. Proc Natl Acad Sci USA 118(40):e2024918118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, Castaings L, Briat JF, Mari S, Curie C (2017) Intracellular Distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell 29:3068–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastow EL, Garcia de la Torre VS, Maclean AE, Green RT, Merlot S, Thomine S, Balk J (2018) Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiol 177(3):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat J, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaings L, Caquot A, Loubet S, Curie C (2016) The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Sci Rep-UK 6:37222

    Article  CAS  Google Scholar 

  • Chang JD, Huang S, Konishi N, Wang P, Chen J, Huang XY, Ma JF, Zhao FJ (2020a) Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J Exp Bot 71:5705–5715

    Article  CAS  PubMed  Google Scholar 

  • Chang JD, Huang S, Yamaji N, Zhang WW, Ma JF, Zhao FJ (2020b) OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ 43:2476–2491

    Article  CAS  PubMed  Google Scholar 

  • Che J, Yamaji N, Ma JF (2021) Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol 230(3):1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Cheng LJ, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao FJ, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145(4):1647–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2019) Safer food through plant science: reducing toxic element accumulation in crops. J Exp Bot 70:5537–5557

    Article  CAS  PubMed  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Jin M, Zheng XM, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan JM (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111(46):16337–16342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Chang JD, Chen R, Li H, Lu H, Tao L, Xiong J (2016) Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice 9(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H, Xie W, Yang C, Xu J, Li J, Wang H, Chen X, Huang C (2018) NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytol 217:179–193

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang P, Yamaji N, Ma JF (2020) Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol Plant 13(6):825–835

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S et al (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA 104:7373–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Sun D, Guan H, Sun Y, Li Z (2021) Transmission electron microscopy analysis on microbial ultrathin sections prepared by the ultra-low lead staining technique. Microsc Microanal 27(5):1–8

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homestasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci 86:900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbierbrygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li J, Yu Y, Dai X, Gong C, Gu D, Xu E, Liu Y, Zou Y, Zhang P, Chen X, Zhang W (2021) The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice. J Exp Bot 72(13):4839–4852

    Article  CAS  PubMed  Google Scholar 

  • Lieten F (2001) Iron nutrition of strawberries grown in peat bags. Small Fruits Review 1(2):103–112

    Article  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin MJ, Smolders E, Zhao FJ, Grant C, Montalvo D (2021) Managing cadmium in agricultural systems. Adv Agron 166:1–129

    Article  Google Scholar 

  • Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu Y, Li G, Zhao FJ, McGrath S, Villada A, Sommella A, De Silva PMCS, Brammer H, Dasgupta T, Islam MR (2013) Variation in rice cadmium related to human exposure. Nviron Sci Tech 47:5613–5618

    Article  CAS  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1Btype of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Moore KL, Chen Y, van de Meene AML, Hughes L, Liu WJ, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ (2014) Combined NanoSIMS and synchrotron X-ray fluorescence reveals distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol 201:104–115

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  CAS  PubMed  Google Scholar 

  • Pottier M, Oomen R, Picco C, Giraudat J, Scholz-Starke J, Richaud P, Carpaneto A, Thomine S (2015) Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J 83(4):625–637

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Roschzttardtz H, Conéjéro G, Curie C, Mari S (2009) Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiol 151:1329–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer J (2004) Nutrient deficiencies and application injuries in field crops” in IOWA State university (University Extension) IPM 42 Revised July 2004

  • Song Y, Wang Y, Mao W, Sui H, Yong L, Yang D, Jiang D, Zhang L, Gong Y (2017) Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 12:e0177978

    Article  PubMed  PubMed Central  Google Scholar 

  • Sui F, Zhao D, Zhu H, Gong Y, Tang Z, Huang XY, Zhang G, Zhao FJ (2019) Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. J Exp Bot 70:2857–2871

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Terda Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishikawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat J, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Chen H, Kopittke PM, Zhao FJ (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yamaji N, Inoue K, Mochida K, Ma JF (2020) Plastic transport systems of rice for mineral elements in response to diverse soil environmental changes. New Phytol 226:156–169

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ 39:1941–1954

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zhang Y, Zhang L et al (2014) OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot 65:4849–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yang W, Zhang S, Yang T, Liu Q, Dong J, Fu H, Mao X, Liu B (2018) Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice 11:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, Wang P (2020) Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446:1–21

    Article  CAS  Google Scholar 

  • Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P (2022) Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol Plant 14:1–18

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Key Research and Development Program of Jiangsu province (BE2021717). We thank Jiani Chen (State Key Laboratory for Mineral Deposits Research, Nanjing University) and Prof. Shiwei Guo (College of Resources and Environmental Sciences, Nanjing Agricultural University) for their technical assistance in the electron microscopy and microanalysis and root phenotypes analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Jie Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Jian Feng Ma.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 865 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JD., Xie, Y., Zhang, H. et al. The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain. Plant Soil 476, 79–95 (2022). https://doi.org/10.1007/s11104-022-05323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05323-6

Keywords

Navigation