Skip to main content
Log in

Contrasting phosphorus (P) accumulation in response to soil P availability in ‘metal crops’ from P-impoverished soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Phosphorus is one of the major nutrients that directly or indirectly affects all aspects of plant growth. Tropical nickel hyperaccumulators, including Phyllanthus rufuschaneyi and Rinorea cf. bengalensis from Borneo Island (in the Malaysian state of Sabah), have evolved to grow in extremely P-impoverished ultramafic soils. This study aimed to establish the response of the root and shoot ionome of these two agromining ‘metal crops’ to soil P availability.

Methods

We undertook a soil P dosing trial on P. rufuschaneyi and R. cf. bengalensis in Sabah (Malaysia) over a period of 12 months. We measured the elemental concentrations in the soil solution and roots, as well as in the developed and developing stems and leaves.

Results

The results show that root and shoot P accumulation increased markedly as soil P availability increased by 80-fold in P. rufuschaneyi, whereas R. cf. bengalensis did not increase as strongly to P supply, despite a 135-fold increase in soil solution P. The contrasting observations on the root and shoot P accumulation patterns in these species suggests distinct P acquisition strategies in these species. The non-responsiveness of R. cf. bengalensis to increasing soil P availability may be related to its possible association with mycorrhizal fungi.

Conclusion

The findings of this study reveal the complexities of phosphate uptake, transport and accumulation in these ‘metal crops’. This information is essential to develop appropriate nutrient management in nickel agromining operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability

Not applicable.

References

  • Ågren GI (1988) Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ 11:613–620

    Article  Google Scholar 

  • Amir H, Perrier N, Rigault F, Jaffré T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35

    Article  CAS  Google Scholar 

  • Aoki M, Fujii K, Kitayama K (2012) Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests. Ecosystems 15:1194–1203

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker A, Ceasar SA, Palmer AJ, Paterson JB, Qi W, Muench SP, Baldwin SA (2015) Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J Exp Bot 66:3523–3540

    Article  CAS  PubMed  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127

    Article  CAS  Google Scholar 

  • Bechem EET, Chuyong GB, Fon BT (2014) A survey of mycorrhizal colonization in the 50-ha Korup forest dynamic plot in Cameroon. Am J Plant Sci 5:1403–1415

    Article  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong H-N (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  CAS  PubMed  Google Scholar 

  • Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Bot Stud 59:9. https://doi.org/10.1186/s40529-018-0225-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    Article  Google Scholar 

  • Echevarria G (2021) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 215–238

    Chapter  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Galey M, van der Ent A, Iqbal M, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:18. https://doi.org/10.1186/s40529-017-0167-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JH, Eissenstat DM (1994) Host genotype and the formation of VA mycorrhizae. Plant Soil 159:179–185

    Article  Google Scholar 

  • Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991

    Article  CAS  Google Scholar 

  • Hidaka A, Kitayama K (2011) Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. J Ecol 99:849–857

    Article  CAS  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: A hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  PubMed  Google Scholar 

  • Kitayama K (2005) Comment on “Ecosystem properties and forest decline in contrasting long-term chronosequences.” Science 308:633b

    Article  Google Scholar 

  • Kitayama K, Aiba S (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Article  Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba SI (2000) Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342–349

    Article  CAS  PubMed  Google Scholar 

  • Kitayama K, Aiba S, Takyu M, Majalap N, Wagai R (2004) Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podozolization. Ecosystems 7:259–274

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic, London

    Google Scholar 

  • Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Niklas KJ (2008) Carbon/nitrogen/phosphorus allometric relations across species. In: White PJ, Hammond JP (eds) The Ecophysiology of Plant-Phosphorus Interactions. Springer, Dordrecht, pp 9–30

    Chapter  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel J-L, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Nkrumah PN, Chaney RL, Morel JL (2018a) Agronomy of ‘metal crops’ used in agromining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 19–38

    Chapter  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018b) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting innovations: mining, energy, and technological change in the digital age. CRC Press, United States, pp 313–324

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018c) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018d) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659. https://doi.org/10.1038/s41598-018-26859-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘metal farm’: Some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops’’ in response to nutrient dosing.’ J Plant Nutr Soil Sci 182:715–728

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019d) Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops.’ Plant Soil 443:27–39

    Article  CAS  Google Scholar 

  • Nkrumah PN, Navarrete Gutiérrez DM, Tisserand R, van der Ent A, Echevarria G, Pollard AJ, Chaney RL, Morel JL (2021a) Element case studies: nickel (tropical regions). In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 365–383

    Chapter  Google Scholar 

  • Nkrumah PN, Chaney RL, Morel JL (2021b) Agronomy of ‘metal crops’ used in agromining. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer, Cham, pp 23–46

    Chapter  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2021c) Variation in the ionome of tropical ‘metal crops’ in response to soil potassium availability. Plant Soil. https://doi.org/10.1007/s11104-021-04995-w

    Article  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  PubMed  CAS  Google Scholar 

  • Paoli GD, Curran LM, Zak DR (2005) Phosphorus efficiency of Bornean rain forest: evidence against the unimodal efficiency hypothesis. Ecology 86:1548–1561

    Article  Google Scholar 

  • Powers JS, Treseder KK, Lerdau MT (2005) Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytol 165:913–921

    Article  CAS  PubMed  Google Scholar 

  • Proctor J, Woodell SR (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: Proctor J, Baker AJM, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover, pp 253–277

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Silver WL (1994) Is nutrient availability related to plant nutrient use in humid tropical forests? Oecologia 98:336–343

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83

    Article  CAS  Google Scholar 

  • Tisserand R, van der Ent A, Nkrumah PN, Sumail S, Echevarria G (2021) Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. Plant Soil. https://doi.org/10.1007/s11104-020-04785-w

    Article  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10:1166–1181

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Oil 362:319–334

    Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    Article  PubMed  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  PubMed  CAS  Google Scholar 

  • van der Ent A, Repin R, Sugau J, Wong KM (2015b) Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204–215

    Article  Google Scholar 

  • van der Ent A, Erskine Pd, Sumail S (2015c) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  CAS  Google Scholar 

  • van der Ent A, van Balgooy M, van Welzen P (2016) Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). Bot Stud 57:19

    CAS  Google Scholar 

  • van der Ent A, Damien L, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Ent A, Mulligan DR, Repin R, Erskine PD (2018) Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecol Res 33:659–674

    Article  CAS  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Erskine PD, Echevarria G (2019) Herbarium X-ray Fluorescence screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Article  CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Vitousek PM, Sanford JRL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Systemat 17:137–167

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White P.J., Hammond J.P. (eds) The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology 7, Springer, Dordrecht.

Download references

Acknowledgements

We acknowledge Sabah Parks for granting permission to conduct research in Kinabalu Park, and the Sabah Biodiversity Council for research permits (JKM/MBS.1000-2/2 Jld. 4 (186)). We thank Deisy Suin for taking care of the nursery. We also thank Richard Yulong, Weiter Minas and Vinson Yempios for their help in the nursery. The French National Research Agency through the national ‘Investissements d’avenir’ program (ANR-10-LABX-21, LABEX RESSOURCES21) is acknowledged for funding support to A. van der Ent and P.N. Nkrumah. P.N. Nkrumah was the recipient of an Australian Government Research Training Program Scholarship and UQ Centennial Scholarship at The University of Queensland, Australia.

Funding

The French National Research Agency through the national ‘Investissements d’avenir’ program (ANR-10-LABX-21, LABEX RESSOURCES21) is acknowledged for funding support to A. van der Ent and P.N. Nkrumah. P.N. Nkrumah was the recipient of an Australian Government Research Training Program Scholarship and UQ Centennial Scholarship at The University of Queensland, Australia.

Author information

Authors and Affiliations

Authors

Contributions

PNN, GE, PDE, AvdE conceived the study. PNN, GE, PDE, RLC, AvdE designed the study. PNN, PDE, SS, AvdE acquired the data. All authors contributed to data analysis, interpretation of data, drafting of article and final approval of the version submitted.

Corresponding author

Correspondence to Philip Nti Nkrumah.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Communicated by Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 609 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkrumah, P.N., Echevarria, G., Erskine, P.D. et al. Contrasting phosphorus (P) accumulation in response to soil P availability in ‘metal crops’ from P-impoverished soils. Plant Soil 467, 155–164 (2021). https://doi.org/10.1007/s11104-021-05075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05075-9

Keywords

Navigation