Skip to main content

Element Case Studies: Nickel (Tropical Regions)

  • Chapter
  • First Online:
Agromining: Farming for Metals

Abstract

Substantial unrealized opportunities exist for economic Ni agromining in the tropics. However, until recently this technology has remained relatively unexploited in this part of the world. In this chapter, we discuss the progress of tropical Ni agromining in two regions, namely Southeast Asia and the neotropical region. Significant advances have been made in Ni agromining operations in Southeast Asia, particularly Sabah (Malaysia), in the past few years: (i) exploring for suitable locations, (ii) screening for hyperaccumulator plants in native flora, (iii) selecting candidate hyperaccumulator species with high biomass production and shoot Ni concentrations (‘metal crops’), (iv) testing the agronomy of ‘metal crops’ to be used in viable agromining operations, and (v) demonstration of real-life agromining operations at field scale. The two most promising ‘metal crops’ in Sabah are Phyllanthus rufuschaneyi and Rinorea cf. bengalensis. However, Ni agromining developments in neotropical regions are still in their infant stages. Preliminary investigations have led to the discovery of a potential ‘metal crop’, Blepharidium guatemalense, having highly desirable attributes for possible Ni agromining. It is envisaged that tropical Ni agromining could be a productive alternative land use in these regions, and as such will significantly improve the livelihood of potential local ‘metal farmers’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becquer T, Quantin C, Rotté-Capet S, Ghanbaja J, Mustin C, Herbillon AJ (2006) Sources of trace metals in Ferralsol in New Caledonia. Eur J Soil Sci 57:200–213

    Article  CAS  Google Scholar 

  • Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Bot Stud 59:9

    Article  Google Scholar 

  • Broadhurst CL, Chaney RL (2016) Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum and perennial ryegrass in serpentine soil. Front Plant Sci 7:451

    Article  Google Scholar 

  • Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall.) O.K. J Geochem Explor 7:295–300

    Article  CAS  Google Scholar 

  • Campbell LR, Stone CO, Shamsedin NM, Kolterman DA, Pollard AJ (2013) Facultative hyperaccumulation of nickel in Psychotria grandis (Rubiaceae). Caribbean Naturalist 1:1–8

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007a) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Li YM, Baker AJM (2007b) Recovering metals from soil. Washington, DC, US patent 7268273 B2, 11 Sept 2007

    Google Scholar 

  • Chaney RL, Baker AJM, Morel JL (2018) The long road to developing agromining/phytomining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 1–17

    Google Scholar 

  • Do C, Abubakari F, Remigio AC et al (2020) A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology 30:1–13

    Article  CAS  Google Scholar 

  • Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 135–156

    Chapter  Google Scholar 

  • Erskine PD, Lee G, Fogliani B, L’Huillier L, McCoy S (2018) Incorporating hyperaccumulator plants into mine rehabilitation in the Asia-Pacific region. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 189–204

    Chapter  Google Scholar 

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:18. https://doi.org/10.1186/s40529-017-0167-9

    Article  CAS  Google Scholar 

  • Hernández-Quiroz M, Herre A, Cram S, Ponce de León C, Siebe C (2012) Pedogenic, lithogenic—or anthropogenic origin of Cr, Ni and V in soils near a petrochemical facility in Southeast Mexico. Catena 93:49–57

    Article  CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    Article  CAS  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves R, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003b) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  CAS  Google Scholar 

  • Lopez S, Benizri E, Erskine PD, Cazes Y, Morel J-L, Lee G, Permana E, Echevarria G, van der Ent A (2019) Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. J Geochem Explor 202:113–127

    Article  CAS  Google Scholar 

  • Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel JL (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37

    Article  CAS  Google Scholar 

  • McCartha GL, Taylor CM, van der Ent A, Echevarria G, Navarrete Gutiérrez DM, Pollard AJ (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. Amer J Bot 106:1377–1385

    Article  CAS  Google Scholar 

  • Navarrete Gutiérrez DM, Pons M-N, Cuevas Sánchez JA, Echevarria G (2018) Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico? Ecol Res 33:641–649

    Article  CAS  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016a) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Nkrumah PN, Erskine PD, Echevarria G, van der Ent A (2016b) Progress in tropical nickel phytomining. In: Life-of-mine 2016 conference. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 135–137

    Google Scholar 

  • Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018a) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018b) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659

    Article  CAS  Google Scholar 

  • Nkrumah P, Chaney RL, Morel JL (2018c) Agronomy of ‘metal crops’ used in agromining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 19–38

    Chapter  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine P, van der Ent A (2018d) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting innovations: mining, energy, and technological change in the digital age. CRC Press, Boca Raton, pp 313–324

    Chapter  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘metal farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops’ in response to nutrient dosing. J Plant Nutr Soil Sci. https://doi.org/10.1002/jpln.201800468

    Article  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019d) Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops’. Plant Soil 443:27–39

    Article  CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of metals and metalloids. Plant Sci 217–218:8–17

    Article  CAS  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Syst 6:105–124

    Article  Google Scholar 

  • Raous S, Echevarria G, Sterckeman T, Hanna K, Thomas F, Martins ES, Becquer T (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111–119

    Article  CAS  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  Google Scholar 

  • van der Ent A, Mulligan DR (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013a) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013b) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel J-L, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  CAS  Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  CAS  Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82

    Article  CAS  Google Scholar 

  • van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169

    Article  CAS  Google Scholar 

  • van der Ent A, Nkrumah PN, Tibbett M, Echevarria G (2019a) Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). J Geochem Explor 196:235–246

    Article  CAS  Google Scholar 

  • van der Ent A, Echevarria G, Pollard AJ, Erskine PD (2019b) X-ray fluorescence ionomics of herbarium collections. Sci Rep 9:4746

    Article  CAS  Google Scholar 

  • Vaughan J, Riggio J, Chen J, Harris HH, van der Ent A (2017) Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy 169:346–355

    Article  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Nti Nkrumah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nkrumah, P.N. et al. (2021). Element Case Studies: Nickel (Tropical Regions). In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO., Morel, J.L. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-58904-2_17

Download citation

Publish with us

Policies and ethics