Skip to main content
Log in

Effects of oxytetracycline on plant growth, phosphorus uptake, and carboxylates in the rhizosheath of alfalfa

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Residues of antibiotics such as oxytetracycline (OTC) in soil can affect microbial compositions and activities, thus affecting soil P availability, and consequently plant P uptake and growth.

Methods

A pot experiment was performed to grow alfalfa in a loess soil with different doses of P (0, 25, 50, and 100 mg kg−1) and OTC (0, 25, 50, and 100 mg kg−1). Plant dry mass, shoot and root P concentrations, bulk soil and rhizosheath pH, rhizosheath carboxylates, and bulk soil alkaline phosphatase activity were determined.

Results

Shoot dry mass and root dry mass increased with increasing P dose, while shoot dry mass decreased with increasing OTC dose, especially at lower P doses (0 and 25 mg kg−1). Addition of OTC slightly reduced P concentrations in shoots and roots, but did not reduce plant P content consistently. Increasing OTC dose significantly reduced bulk soil alkaline phosphatase activity at 0P and strongly reduced rhizosheath tartrate amount at all P doses.

Conclusions

The effects of OTC on plant growth and P uptake depended on both OTC and P doses in soil. High OTC dose had negative effects on shoot P uptake and growth, especially at lower P doses, while it had a positive effect on root growth at higher P doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bellino A, Lofrano G, Carotenuto M, Libralato G, Baldantoni D (2018) Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.). Ecotox Environ Safe 148:135–141

    Article  CAS  Google Scholar 

  • Berg WK, Cunningham SM, Brouder SM, Joern BC, Johnson KD, Santini JB, Volenec JJ (2005) Influence of phosphorus and potassium on alfalfa yield and yield components. Crop Sci 45:297–304

    Article  Google Scholar 

  • Boleas S, Alonso C, Pro J, Fernandez C, Carbonell G, Tarazona JV (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition. J Hazard Mater 122:233–241

    Article  CAS  PubMed  Google Scholar 

  • Bondarczuk K, Markowicz A, Piotrowska-Seget Z (2016) The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ Int 87:49–55

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, Wu YB (2014) Effect of different oxytetracycline addition methods on its degradation behavior in soil. Sci. Total Environ 479–480:241–246

    Article  CAS  Google Scholar 

  • Chen ZC, Liao H (2016) Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J Genet Genomics 43:631–638

    Article  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Colwell JD (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agr Anim Husb 24:535–542

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Switzinger SP, Havens KE, Lancelot C, Linkens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Danilova N, Galitskaya P, Selivanovskaya S (2020) Veterinary antibiotic oxytetracycline’s effect on the soil microbial community. J Ecol Environ 44. https://doi.org/10.1186/s41610-020-00154-x

  • De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:203–212

    Article  PubMed  CAS  Google Scholar 

  • Gupta AP, Neue HU, Singh VP (1993) Phosphorus determination in rice plants containing variable manganese content by the phospho-molybdo-vanadate (yellow) and phosphomolybdate (blue) colorimetric methods. Commun Soil Sci Plan 24:1309–1318

    Article  CAS  Google Scholar 

  • Haller MY, Stephan RM, Mcardell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ham BK, Chen JY, Yan Y, Lucas WJ (2018) Insights into plant phosphate sensing and signaling. Curr Opin Biotech 49:1–9

    Article  CAS  PubMed  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  PubMed  Google Scholar 

  • He H, Peng Q, Wang X, Fan C, Pang J, Lambers H, Zhang X (2017) Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant Soil 416:565–584

    Article  CAS  Google Scholar 

  • He H, Wu M, Guo L, Fan C, Zhang Z, Su R, Peng Q, Pang J, Lambers H (2020) Release of tartrate as a major carboxylate by alfalfa (Medicago sativa L.) under phosphorus deficiency and the effect of soil nitrogen supply. Plant Soil 440:160–178

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hu J, Wang J (2016) Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus huanglongbing via trunk injection. Phytopathology 106:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228

    Article  CAS  Google Scholar 

  • Kim OB, Unden G (2007) The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli. J Bacteriol 189:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Kitayama K (2013) The activities of soil and root acid phosphatase in the nine tropical rain forests that differ in phosphorus availability on mount Kinabalu, Borneo. Plant Soil 367:215–224

    Article  CAS  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147:187–193

    Article  CAS  PubMed  Google Scholar 

  • Lissbrant S, Stratton S, Cunningham SM, Brouder SM, Volenec JJ (2009) Impact of long-term phosphorus and potassium fertilization on alfalfa nutritive value-yield relationships. Crop Sci 49:1116–1124

    Article  CAS  Google Scholar 

  • Little IP (1992) The relationship between soil pH measurements in calcium chloride and water suspensions. Aust J Soil Res 30:587–592

    Article  CAS  Google Scholar 

  • Liu B, Bao YY, Zhou QX, Zhang CD (2014) Effect of N, P fertilizers on adsorption of oxytetracycline to cinnamon soil. J Environ Sci-China 34:2057–2062

    CAS  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao JL, Yang JF, Zhao LF (2009) Effects of selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu YH, Liu CX, Wang Z, Dong J, Zhu GF, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic condition. Ecol Eng 53:138–143

    Article  Google Scholar 

  • Li WL, Wang JF, Lv Y, Dong HJ, Wang LL, He T, Li QS (2020) Improving cadmium mobilization by phosphate-solubilizing bacteria via regulating organic acids metabolism with potassium. Chemosphere 244:125475. https://doi.org/10.1016/j.chemosphere.2019.125475

    Article  CAS  PubMed  Google Scholar 

  • Li ZJ, Xie XY, Zhang SQ, Liang YC (2011) Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant. Pedosphere 21:244–250

    Article  CAS  Google Scholar 

  • Maistry PM, Muasyaa AM, Valentineb AJ, Chimphangoa SBM (2015) Balanced allocation of organic acids and biomass for phosphorus and nitrogen demand in the fynbos legume Podalyria calyptrata. J Plant Physiol 174:16–25

    Article  CAS  PubMed  Google Scholar 

  • Melaku S, Dams R, Moens L (2005) Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: microwave acid digestion versus aqua regia extraction. Anal Chim Acta 543:117–123

    Article  CAS  Google Scholar 

  • Menge DNL, Hedin LO, Pacala SW (2012) Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PLoS One 7:e42045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menz J, Olosson O, Kummerer K (2019) Antibiotics residues in livestock manure: does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J Hazard mater 379, UNSP 120807

  • Miao SJ, Qiao YF, Liu XB (2011) Effect of nitrogen/phosphorus ratio on biological characteristics and organic acid exudation in soybean roots. Chin J Eco-Agric 19:593–596

    Article  Google Scholar 

  • Minden V, Deloy A, Volkert AM, Leonhardt SD, Pufal G (2017) Antibiotics impact plant traits, even at small concentrations. AoB plants 2, plx010

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural water. Anal Chim Acta 26:31–36

    Article  Google Scholar 

  • Ning J, He XZ, Hou FJ, Lou SN, Chen XJ, Chang SH, Zhang C, Zhu WH (2020) Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region. PeerJ 8:e8738

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottman MJ, Thompson TL, Doerge TA (2006) Alfalfa yield and soil phosphorus increased with topdressed granular compared with fluid phosphorus fertilizer. Agron J 98:899–906

    Article  CAS  Google Scholar 

  • Pan M, Chu LM (2016) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotox Environ Safe 126:228–237

    Article  CAS  Google Scholar 

  • Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KHM, Bolland MDA, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331:241–255

    Article  CAS  Google Scholar 

  • Pang J, Ryan MH, Siddique KHM, Simpson RJ (2017) Unwrapping the rhizosheath. Plant Soil 418:129–139

    Article  CAS  Google Scholar 

  • Pant HK, Warman PR (2000) Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol Fert Soils 30:306–311

    Article  CAS  Google Scholar 

  • Qian X, Gu J, Pan HJ, Zhang KY, Sun W, Wang XJ, Gao H (2015) Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur J Soil Biol 70:23–30

    Article  CAS  Google Scholar 

  • Radersma S, Grierson PF (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219

    Article  CAS  Google Scholar 

  • Rahim A, Ranjha AM, Rahamtullah WEA (2010) Effect of phosphorus application and irrigation scheduling on wheat yield and phosphorus use efficiency. Soil Environ 29:15–22

    CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Roose-Amsaleg C, Laverman AM (2016) Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut R 23:4000–4012

    Article  CAS  Google Scholar 

  • Sahrawat KL, Jones MP, Diatta S, Sike M (2011) Long-term phosphorus fertilizer effects on phosphorus uptake, efficiency, and recovery by upland rice on an Ultisol. Commun Soil Sci Plan 34:999–1011

    Article  CAS  Google Scholar 

  • Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:es0480217

    Article  CAS  Google Scholar 

  • Scholz RW, Uchrich AE, Eilitt M, Roy A (2013) Sustainable use of phosphorus: a finite resource. Sci Total Environ 461:799–803

    Article  PubMed  CAS  Google Scholar 

  • Schröder JJ, Smit AI, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:822–831

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Simpson RJ, Stefanski A, Marshall DJ, Moore AD, Richardson AE (2015) Management of soil phosphorus fertility determines the phosphorus budget of a temperate grazing system and is the key to improving phosphorus efficiency. Agric Ecosyst Environ 212:263–277

    Article  CAS  Google Scholar 

  • Suriyagoda LDB, Ryan MH, Renton M, Lambers H (2010) Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. Ann Bot 105:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analyses, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 903–947

    Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu TZ, Wang T (2006) The fate of antibiotics in environment and its ecotoxicology: a review. Acta Ecol Sin 26:265–270

    CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agro 69:99–151

    Article  CAS  Google Scholar 

  • Xie X, Zhou Q, Bao Q, He Z, Bao Y (2011) Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.). Environ Toxicol 26:417–423

    Article  CAS  PubMed  Google Scholar 

  • Yang JF, Ying GG, Zhou LJ, Liu S, Zhao JL (2009a) Dissipation of oxytetracycline in soils under different redox conditions. Environ Pollut 157:2704–2709

    Article  CAS  PubMed  Google Scholar 

  • Yang QX, Zhang J, Zhu KF, Zhang H (2009b) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci-China 21:954–959

    Article  CAS  PubMed  Google Scholar 

  • Yao JH, Niu DK, Li ZJ, Liang YC, Zhang SQ (2010) Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Sci Agr Sin (in Chinese) 43:721–728

    CAS  Google Scholar 

  • Zhao DL, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403

    Article  CAS  Google Scholar 

  • Zribi OT, Houmani H, Kouas S, Slama I, Ksouri R, Abdelly C (2014) Comparative study of the interactive effects of salinity and phosphorus availability in wild (Hordeum maritimum) and cultivated barley (H. vulgare). J Plant Growth Regul 33:860–870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Key Research and Development Plan of China (2017YFC0504504), and The Natural Science Basic Research Program of Shaanxi Province (2019JM-411). Rhizosheath carboxylates were analyzed using The Biology Teaching and Research Core Facility at College of Life Sciences, Northwest A&F University. We thank Xiyan Chen for helping the analysis of rhizosheath carboxylates using HPLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua He.

Additional information

Responsible Editor: Andrea Schnepf.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Su, R., Chang, C. et al. Effects of oxytetracycline on plant growth, phosphorus uptake, and carboxylates in the rhizosheath of alfalfa. Plant Soil 461, 501–515 (2021). https://doi.org/10.1007/s11104-021-04840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04840-0

Keywords

Navigation