Skip to main content
Log in

Exotic Spartina alterniflora invasion alters soil nitrous oxide emission dynamics in a coastal wetland of China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Exotic Spartina alterniflora invasion resulting from anthropogenic activities significantly affects microbial nitrogen (N) transformation and associated nitrous oxide (N2O) emission in coastal wetland soils. However, the responses of soil N2O emission dynamics to plant invasion remain unclear. This study assesses the effects of S. alterniflora invasion on soil N2O potential production and consumption processes.

Methods

We used natural isotope tracing technique to investigate potential N2O production and consumption rates in S. alterniflora invaded and native saltmarsh zones (Phragmites australis, Scirpus mariqueter and bare mudflat) in the Yangtze Estuary.

Results

Soil potential net N2O production rates in summer were lower in S. alterniflora stands than in S. mariqueter and bare mudflat stands, but no significant differences among these saltmarsh habitats occurred during winter. Potential gross N2O production and consumption rates were higher in S. alterniflora and P. australis stands compared to S. mariqueter and bare mudflat stands. The gross consumption proportion in S. alterniflora and P. australis stands was higher, which affected net N2O production. Hydroxylamine (NH2OH) oxidation and nitrifier denitrification contributed 4.52–12.62% and 13.87–21.58% of soil N2O source, respectively, but denitrification was the dominant pathway (69.83–80.09%). S. alterniflora invasion increased the contributions of NH2OH oxidation and nitrifier denitrification to N2O source slightly, but decreased the contribution of denitrification to N2O source. Soil potential N2O production and consumption processes were influenced by water-filled pore space, pH, sulfide, and carbon and N substrates.

Conclusion

Exotic S. alterniflora invasion affected soil N2O dynamics by increasing substrates and altering microenvironments, thus mediating N2O emission from coastal saltmarsh soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S (2007) Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biol Biochem 39:622–631

    Article  CAS  Google Scholar 

  • Baral BR, Kuyper TW, Van Groenigen JW (2014) Liebig’s law of the minimum applied to a greenhouse gas: alleviation of P-limitation reduces soil N2O emission. Plant Soil 374:539–548

    Article  CAS  Google Scholar 

  • Bowden WB (1986) Nitrification, nitrate reduction, and nitrogen immobilization in a tidal freshwater marsh sediment. Ecology 67:88–99

    Article  CAS  Google Scholar 

  • Bu N, Qu JF, Li ZL, Li G, Zhao H, Zhao B, Chen JK, Fang CM (2015) Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China. PLoS One 10:e0121571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos T R Soc B 368:20130122

    Article  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2008) NO3 -driven SO4 2− production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11:908–922

    Article  CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  Google Scholar 

  • Cheng XL, Peng RH, Chen JQ, Luo YQ, Zhang QF, An SQ, Chen JK, Li B (2007) CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68:420–427

    Article  CAS  Google Scholar 

  • Chmura GL, Kellman L, Guntenspergen GR (2011) The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh. Environ Res Lett 6:044016

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Cohen Y, Gordon LI (1978) Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Res 25:509–524

    Article  CAS  Google Scholar 

  • Deng F, Hou L, Liu M, Zheng Y, Yin G, Li X, Jiang X (2015) Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze estuary. J Geophys Res Biogeosci 120:1521–1531

    Article  CAS  Google Scholar 

  • Deppe M, Well R, Giesemann A, Spott O, Flessa H (2017) Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots. Soil Biol Biochem 104:68–80

    Article  CAS  Google Scholar 

  • Dollhopf SL, Hyun JH, Smith AC, Adams HJ, O'Brien S, Kostka JE (2005) Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl Environ Microbiol 71:240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong LF, Nedwell DB, Underwood GJ, Thornton DC, Rusmana I (2002) Nitrous oxide formation in the Colne estuary, England: the central role of nitrite. Appl Environ Micro 68:1240–1249

    Article  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the atmosphere: report of the Dahlem workshop on exchange of trace gases between terrestrial ecosystems and the atmosphere, Berlin 1989, February 19–24. Wiley, pp 7–21

  • Gao D, Li X, Lin X, Wu D, Jin B, Huang Y, Liu M, Chen X (2017) Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: dynamics and environmental implications. Plant Soil 421:383–399

    Article  CAS  Google Scholar 

  • Gao GF, Li PF, Zhong JX, Shen ZJ, Chen J, Li YT, Isabwe A, Zhu XY, Ding QS, Zhang S, Gao CH, Zheng HL (2019) Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Sci Total Environ 653:231–240

    Article  CAS  PubMed  Google Scholar 

  • Hines ME (1994) Acetate concentrations and oxidation in salt-marsh sediments. Limnol Oceanogr 39:140–148

    Article  Google Scholar 

  • Holtan-Hartwig L, Dörsch P, Bakken LR (2002) Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biol Biochem 34:1797–1806

    Article  CAS  Google Scholar 

  • Hou L, Zheng Y, Liu M, Gong J, Zhang XL, Yin GY, You L (2013) Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze estuary. J Geophys Res Biogeosci 118:1237–1246

    Article  CAS  Google Scholar 

  • Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Okabe S (2014) Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ Microbiol 16:3168–3180

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Qi F, Xu X, Feng J, Wu H, Guo J, Lin G (2016) Co-regulations of Spartina alterniflora invasion and exogenous nitrogen loading on soil N2O efflux in subtropical mangrove mesocosms. PLoS One 11:e0146199

    Article  PubMed  PubMed Central  Google Scholar 

  • Jørgensen CJ, Struwe S, Elberling B (2012) Temporal trends in N2O flux dynamics in a Danish wetland–effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob Chang Biol 18:210–222

    Article  Google Scholar 

  • Kaspar HF (1982) Nitrite reduction to nitrous oxide by propionibacteria: detoxication mechanism. Arch Microbiol 133:126–130

    Article  CAS  Google Scholar 

  • Koba K, Osaka K, Tobari Y, Toyoda S, Ohte N, Katsuyama M, Suzuki N, Itoh M, Yamagishi H, Kawasaki M, Kim SJ, Yoshida N, Nakajima T (2009) Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochim Cosmochim Ac 73:3115–3133

    Article  CAS  Google Scholar 

  • Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, Strous M (2014) The environmental controls that govern the end product of bacterial nitrate respiration. Science 345:676–679

    Article  CAS  PubMed  Google Scholar 

  • Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Cheng XL (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze estuary. Oecologia 156:589–600

    Article  PubMed  Google Scholar 

  • Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microb 53:1536–1540

    CAS  Google Scholar 

  • Lu J, Zhang Y (2013) Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China. Ecol Eng 52:175–181

    Article  Google Scholar 

  • Lu R (2000) Methods of soil and agro-chemical analysis. China Agric Sci Tech Press, Beijing

    Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061

    Article  Google Scholar 

  • Murray R, Erler D, Rosentreter J, Maher D, Eyre B (2018) A seasonal source and sink of nitrous oxide in mangroves: insights from concentration, isotope, and isotopomer measurements. Geochim Cosmochim Ac 238:169–192

    Article  CAS  Google Scholar 

  • Moseman-Valtierra S, Gonzalez R, Kroeger KD, Tang J, Chao WC, Crusius J, Shelton J (2011) Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos Environ 45:4390–4397

    Article  CAS  Google Scholar 

  • Onley JR, Ahsan S, Sanford RA, Löffler FE (2018) Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microb 84:e01985–e01917

    Google Scholar 

  • Ostrom NE, Pitt A, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Robertson GP (2007) Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J Geophys Res Biogeosci 112:G02005

    Article  CAS  Google Scholar 

  • Peng RH, Fang CM, Li B, Chen JK (2011) Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze estuary, China. Oecologia 165:797–807

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Robertson GP (1987) Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes. Soil Biol Biochem 19:187–193

    Article  CAS  Google Scholar 

  • Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Nissen S (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. P Natl Acad Sci USA 109:19709–19714

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C, Styles RV (2000) Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere Global Change Sci 2:267–279

    Article  CAS  Google Scholar 

  • Seliskar DM, Smart KE, Higashikubo BT, Gallagher JL (2004) Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands. Wetlands 24:426–433

    Article  Google Scholar 

  • Shoun H, Tanimoto T (1991) Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem 266:11078–11082

    CAS  PubMed  Google Scholar 

  • Sørensen J, Tiedje JM, Firestone RB (1980) Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Appl Environ Microbiol 39:105–108

    PubMed  PubMed Central  Google Scholar 

  • Stribling JM, Cornwell JC (2001) Nitrogen, phosphorus, and sulfur dynamics in a low salinity marsh system dominated by Spartina alterniflora. Wetlands 21:629–638

    Article  Google Scholar 

  • Sun Z, Sun W, Tong C, Zeng C, Yu X, Mou X (2015) China's coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ Int 79:25–41

    Article  PubMed  Google Scholar 

  • Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA (2003) Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun Mass Sp 17:738–745

    Article  CAS  Google Scholar 

  • Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microb 72:638–644

    Article  CAS  Google Scholar 

  • Sutka RL, Adams GC, Ostrom NE, Ostrom PH (2008) Isotopologue fractionation during N2O production by fungal denitrification. Rapid Commun Mass Sp 22:3989–3996

    Article  CAS  Google Scholar 

  • Stevens RJ, Laughlin RJ, Malone JP (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30:1119–1126

    Article  CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1983) Denitrification: ecological niches, competition and survival. Anton Leeuw Int J G 48:569–583

    Article  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microb 68:1312–1318

    Article  CAS  Google Scholar 

  • Tong C, Zhang L, Wang W, Gauci V, Marrs R, Liu B, Zeng C (2011) Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environ Res 111:909–916

    Article  CAS  PubMed  Google Scholar 

  • Toyoda S, Yano M, Nishimura SI, Akiyama H, Hayakawa A, Koba K, Ogawa NO (2011) Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Global Biogeochem Cy 25:96–101

    Article  CAS  Google Scholar 

  • Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37:1535–1545

    Article  CAS  Google Scholar 

  • Wang DQ, Chen ZL, Wang J, Xu SY, Yang HX, Chen H, Yang LY, Hu LZ (2007) Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze estuary. Estuar Coast Shelf S 73:43–53

    Article  Google Scholar 

  • Wei J, Zhou M, Vereecken H, Brüggemann N (2017) Large variability in CO2 and N2O emissions and in 15N site preference of N2O from reactions of nitrite with lignin and its derivatives at different pH. Rapid Commun Mass Sp 31:1333–1343

    Article  CAS  Google Scholar 

  • Wrage N, Velthof GL, Van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Wrage-Mönnig N, Horn MA, Well R, Müller C, Velthof G, Oenema O (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem 123:A3–A16

    Article  CAS  Google Scholar 

  • Wu LB, Liu XD, Fang YT, Hou SJ, Xu LQ, Wang XY, Fu PQ (2018) Nitrogen cycling in the soil–plant system along a series of coral islands affected by seabirds in the South China Sea. Sci Total Environ 627:166–175

    Article  CAS  PubMed  Google Scholar 

  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, Emmenegger L, Mohn J (2013) Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment. Environ Sci Technol 47:1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Yan YE, Jiang F, Leng X, Chen XL, An SQ (2016) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408:443–456

    Article  CAS  Google Scholar 

  • Yang WH, Teh YA, Silver WL (2011) A test of a field-based 15 N–nitrous oxide pool dilution technique to measure gross N2O production in soil. Glob Chang Biol 17:3577–3588

    Article  Google Scholar 

  • Yang WH, Silver WL (2016) Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape. Glob Chang Biol 22:2228–2237

    Article  PubMed  Google Scholar 

  • Yin GY, Hou LJ, Liu M, Liu ZF, Gardner WS (2014) A novel membrane inlet mass spectrometer method to measure 15NH4 + for isotope-enrichment experiments in aquatic ecosystems. Environ Sci Technol 48:9555–9562

    Article  CAS  PubMed  Google Scholar 

  • Yin GY, Hou LJ, Liu M, Li XF, Zheng YL, Gao J, Lin XB (2017) DNRA in intertidal sediments of the Yangtze estuary. J Geophys Res Biogeosci 122:1988–1998

    Article  CAS  Google Scholar 

  • Yu X, Yang J, Liu L, Tian Y, Yu Z (2015) Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland. Environ Sci Pollut R 22:3107–3115

    Article  CAS  Google Scholar 

  • Yuan J, Ding W, Liu D, Kang H, Freeman C, Xiang J, Lin Y (2015) Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    Article  Google Scholar 

  • Zhang WL, Zeng CS, Tong C, Zhai SJ, Lin X, Gao DZ (2015) Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuar Coast Shelf S 154:30–38

    Article  CAS  Google Scholar 

  • Zhang Y, Wang L, Xie X, Huang L, Wu Y (2013) Effects of invasion of Spartina alterniflora and exogenous N deposition on N2O emissions in a coastal salt marsh. Ecol Eng 58:77–83

    Article  Google Scholar 

  • Zhang W, Li Y, Xu C, Li Q, Lin W (2016) Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4 +-fertilized soil of North China. Sci Rep 6:29257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Hou LJ, Liu M, Yin GY, Gao J, Jiang XF, Wang R (2016) Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora. Appl Microbiol Biot 100:8203–8212

    Article  CAS  Google Scholar 

  • Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. P Natl Acad Sci USA 110:201219993

    Google Scholar 

  • Zou Y, Hirono Y, Yanai Y, Hattori S, Toyoda S, Yoshida N (2014) Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea (Camellia sinensis) in Shizuoka, Central Japan. Soil Biol Biochem 77:276–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of China (Nos. 41671463, 41725002, 41761144062, 41730646, and 41601530). It was also supported by Chinese National Key Programs for Fundamental Research and Development (Nos. 2016YFA0600904, and 2016YFE0133700), Fundamental Research Funds for the Central Universities, and the Yangtze Delta Estuarine Wetland Station (ECNU). We thank Wayne S. Gardner, anonymous reviewers and editor for constructive comments and valuable suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Hou or Min Liu.

Additional information

Responsible Editor: Sven Marhan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Hou, L., Li, X. et al. Exotic Spartina alterniflora invasion alters soil nitrous oxide emission dynamics in a coastal wetland of China. Plant Soil 442, 233–246 (2019). https://doi.org/10.1007/s11104-019-04179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04179-7

Keywords

Navigation