Skip to main content
Log in

Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: Dynamics and environmental implications

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The invasion of Spartina alterniflora has a significant influence on soil biogeochemistry cycling in coastal wetlands. However, the roles of the S. alterniflora invasion chronosequence in regulating soil dissimilatory NO3 reduction processes (denitrification (DNF), anaerobic ammonium oxidation (ANA) and dissimilatory nitrate reduction to ammonium (DNRA)) remains unclear. The objective of this study was therefore to reveal the effects of S. alterniflora invasion on the soil NO3 reduction processes and associated gene abundance.

Methods

We investigated plant biomass, soil properties, NO3 reduction processes and associated gene abundance of NO3 reduction pathways following S. alterniflora invasion chronosequences of 6, 10, and 14 years compared to Cyperus malaccensis in a coastal wetland of southeastern China.

Results

The S. alterniflora invasion generally increased plant biomass, soil water content, available substrates, nirS, anammox bacterial 16S rRNA and nrfA gene abundance, but it decreased soil bulk density. Soil DNF, ANA and DNRA rates in stands of S. alterniflora ranged from 1.52 to 17.58, 0.31 to 1.27 and 0.14 to 2.01 nmol N g−1 h−1, respectively, which were generally higher than the values in stands of C. malaccensis. The soil NO3 reduction rates generally increased with the increasing chronosequence of invasion by S. alterniflora, while the changes in DNF and ANA rates were less pronounced than changes in DNRA. DNF was the dominant pathway (70.00–92.41%), and the ANA and DNRA contributed 2.49–15.27% and 5.10–20.75% to the total NO3 reduction, respectively. The contributions of DNF and ANA to the total NO3 reduction decreased slightly, while the contribution of DNRA increased remarkably after S. alterniflora invasion. Soil NO3 reduction processes were influenced by available substrates and associated microbial activities. It is estimated that an N loss of approximately 520.97 g N m−2 yr.−1 in C. malaccensis and 794.46 g N m−2 yr.−1 in S. alterniflora were linked to both DNF and ANA processes.

Conclusions

The S. alterniflora invasion altered soil NO3 reduction processes by increasing soil microbial activities and available substrates and thus may further mediate the soil N availability in the coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bernard RJ, Mortazavi B, Kleinhuizen AA (2015) Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3 reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry 125:47–64

    Article  CAS  Google Scholar 

  • Bettazzi E, Caffaz S, Vannini C, Lubelloa C (2010) Nitrite inhibition and intermediates effects on Anammox bacteria: a batch-scale experimental study. Process Biochem 45:573–580

    Article  CAS  Google Scholar 

  • Bu NSQJF, Li ZL, Li G, Zhao H, Zhao B, Chen JK, Fang CM (2015) Effects of Spartina Alterniflora invasion on soil respiration in the Yangtze River estuary, China. PLoS One 10(3):e0121571

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgin AJ, Hamilton SK (2008) NO3 -driven SO4 2− production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11:908–922

    Article  CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  • Canion A, Overholt WA, Kostka JE, Huettel M, Lavik G, Kuypers MM (2014) Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in Arctic fjord sediments. Environ Microbiol 16:3331–3344

    Article  CAS  PubMed  Google Scholar 

  • Cao WZ, Yang JX, Li Y, Liu BL, Wang FF, Chang CT (2016) Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China. Mar Pollut Bull 110:155–161

    Article  CAS  PubMed  Google Scholar 

  • Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour Technol 99:3331–3336

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Chen GC, Ye Y (2015) Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Sci Total Environ 526:19–28

    Article  CAS  PubMed  Google Scholar 

  • Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biol Biochem 38:3380–3386

    Article  CAS  Google Scholar 

  • Cheng XL, Luo YQ, Xu Q, Lin GH, Zhang QF, Chen JK, Li B (2010) Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil 327:85–94

    Article  CAS  Google Scholar 

  • Cheng L, Li XF, Lin XB, Hou LJ, Liu M, Li Y, Liu S, XT H (2016) Dissimilatory nitrate reduction processes in sediments of urban river networks: spatiotemporal variations and environmental implications. Environ Pollut 219:545–554

    Article  CAS  PubMed  Google Scholar 

  • Compton JE, Harrison JA, Dennis RL, Greaver TL, Hill BH, Jordan SJ, Walker H, Campbell HV (2011) Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol Lett 14:804–815

    Article  PubMed  Google Scholar 

  • Cui SH, Shi YL, Groffman PM, Schlesinger WH, Zhu YG (2013) Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc Natl Acad Sci U S A 110:2052–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392

    Article  CAS  PubMed  Google Scholar 

  • Deng FY, Hou LJ, Liu M, Zheng YL, Yin GY, Li XF, Lin XB, Chen F, Gao J, Jiang XF (2015) Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze estuary. J Geophys Res Biogeosci 120(8):1521–1531

    Article  CAS  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change. Trends Ecol Evol 20:470–474

    Article  PubMed  Google Scholar 

  • Dong LF, Nedwell DB, Underwood GJ, Thornton DC, Rusmana I (2002) Nitrous oxide formation in the Colne estuary, England: the central role of nitrite. Appl Environ Microbiol 68(3):1240–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong LF, Sobey MN, Smith CJ, Sobey RI, Phillips W, Stott A, Nedwell DB (2011) Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnol Oceanogr 56:279–291

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJ, Siegrist H, van der Meer JR, Zehnder AJ (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207

    Article  CAS  PubMed  Google Scholar 

  • Fernández I, Dosta J, Fajardo C, Campos JL, Mosquera-Corral A, Méndez R (2012) Short-and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manag 95:S170–S174

    Article  Google Scholar 

  • Fujian Provincial Oceanic and Fishery Administration (2016) Report on the Marine Environmental Quality in Fujian in 2015. http://www.fujian.gov.cn/xw/ztzl/snfw/hjqx/hyhjzl/fjshyhjzlgb/201608/t20160811_1208890.htm

  • Gao J, Hou LJ, Zheng YL, Liu M, Yin GY, Li XF, Lin XB, Yu CD, Wang R, Jiang XF, Sun XR (2016) nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Appl Microbiol Biotechnol 100:8573–8582

    Article  CAS  PubMed  Google Scholar 

  • Giles ME, Morley NJ, Baggs EM, Daniell TJ (2012) Soil nitrate reducing processes–drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front Microbiol 3:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamersley MR, Howes BL (2005) Coupled nitrification–denitrification measured in situ in a Spartina alterniflora marsh with a 15NH4 + tracer. Mar Ecol Prog Ser 299:123–135

  • Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Sinninghe Damsté JS, Krüger S, Graco M, Gutiérrez D, Kuypers MM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52(3):923–933

    Article  CAS  Google Scholar 

  • Hou L, Zheng Y, Liu M, Gong J, Zhang XL, Yin GY, You L (2013) Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze estuary. J Geophys Res Biogeosci 118:1237–1246

    Article  CAS  Google Scholar 

  • Hou LJ, Yin GY, Liu M, Zhou JL, Zheng YL, Gao J, Zong HB, Yang Y, Gao L, Tong CF (2014) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49(1):326–333

    Article  PubMed  Google Scholar 

  • Hou L, Zheng Y, Liu M, Li XF, Lin XB, Yin GY, Gao J, Deng FY, Chen F, Jiang XF (2015) Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Sci Rep 5:15621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Wilson BJ, Sun Z, Ren P, Tong C (2016) Effects of the addition of nitrogen and sulfate on CH4 and CO2 emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Sci Total Environ 579:292–304

    Article  PubMed  Google Scholar 

  • Huang JX, Xu X, Wang M, Nie M, Qiu SY, Wang Q, Quan ZX, Xiao M, Li B (2016) Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Sci Rep 6:20384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huygens D, Rütting T, Boeckx P, Van Cleemput O, Godoy R, Müller C (2007) Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem. Soil Biol Biochem 39(10):2448–2458

    Article  CAS  Google Scholar 

  • Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Yoshid N, Okabe S (2014) Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ Microbiol 16(10):3168–3180

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Qi F, Xu X, Feng JX, Wu H, Guo JM, Peng RH, Zhu XS, Luo YQ, Lin GH (2016) Co-regulations of Spartina Alterniflora invasion and exogenous nitrogen loading on soil N2O efflux in subtropical mangrove mesocosms. PLoS One 11(1):e0146199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelso BHL, Smith RV, Laughlin RJ, Lennox SD (1997) Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Appl Environ Microbiol 63:4679–4685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG (2014) The environmental controls that govern the end product of bacterial nitrate respiration. Science 6197:676–679

    Article  Google Scholar 

  • Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, JH W, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  • Lin XB, Hou LJ, Liu M, Li XF, Zheng YL, Yin GY, Gao J, Jiang XF (2016) Nitrogen mineralization and immobilization in sediments of the East China Sea: spatiotemporal variations and environmental implications. J Geophys Res Biogeosci 121:2842–2855

    Article  CAS  Google Scholar 

  • Liu XJ, Duan L, Mo JM, EZ D, Shen JL, XK L, Zhang Y, Zhou XB, He CE, Zhang FS (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Lu LK (2000) Analysis methods of soil and agro-chemistry. China Agriculture Press, Beijing

    Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8(8):2047–2061

    Article  Google Scholar 

  • Mou X, Liu XT, Tong C, Sun ZG (2014) Responses of CH4 emissions to nitrogen addition and Spartina Alterniflora invasion in Minjiang River estuary, southeast of China. Chin Geogr Sci 24(5):562–574

    Article  Google Scholar 

  • Naeher S, Huguet A, Roose-Amsaleg CL, Laverman AM, Fosse C, Lehmann MF, Derenne S, Zopfi J (2015) Molecular and geochemical constraints on anaerobic ammonium oxidation (anammox) in a riparian zone of the seine estuary (France). Biogeochemistry 123(1–2):237–250

    Article  CAS  Google Scholar 

  • Nguyen DH, Biala J, Grace PR, Scheer C, Rowlings DW (2014) Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products. SpringerPlus 3(1):491

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng RH, Fang CM, Li B, Chen JK (2011) Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze estuary, China. Oecologia 165:797–807

    Article  PubMed  Google Scholar 

  • Popp TJ, Chanton JP, Whiting GJ, Grant N (2000) Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry 51:259–281

    Article  CAS  Google Scholar 

  • Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer R, L (2003) Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol. Oceanogr-Me 1: 63–73

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  CAS  PubMed  Google Scholar 

  • Sgouridis F, Heppell CM, Wharton G, Trimmer M (2011) Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain. Water Res 45:4909–4922

    Article  CAS  PubMed  Google Scholar 

  • Shan J, Zhao X, Sheng R, Xia YQ, Ti CP, Quan XF, Wang SW, Wei WX, Yan XY (2016) Dissimilatory nitrate reduction processes in typical Chinese Paddy soils: rates, relative contributions, and influencing factors. Environ Sci Technol 50:9972–9980

    Article  CAS  PubMed  Google Scholar 

  • Shen LD, Liu S, He ZF, Lian X, Huang Q, He YF, Lou LP, XY X, Zheng P, BL H (2015) Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland. Soil Biol Biochem 83:43–51

    Article  CAS  Google Scholar 

  • Silver WL, Thompson AW, Reich A, Ewel JJ, Firestone MK (2005) Nitrogen cycling in tropical plantation forests: potential controls on nitrogen retention. Ecol Appl 15(5):1604–1614

    Article  Google Scholar 

  • Smith CJ, Dong LF, Wilson J, Stott A, Osborn AM, Nedwell D (2015) Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient. Front Microbiol 6:542

    PubMed  PubMed Central  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  PubMed  Google Scholar 

  • Stremińska MA, Felgate H, Rowley G, Richardson DJ, Baggs EM (2012) Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria. Environ Microbiol Rep 4(1):66–71

    Article  PubMed  Google Scholar 

  • Sun ZG, Sun WG, Tong C, Zeng CS, Yu X, Mou XJ (2015) China's coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ Int 79:25–41

    Article  PubMed  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Eco 49(3):401–417

    Article  Google Scholar 

  • Throop HL, Lajtha K, Kramer M (2013) Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem. Biogeochemistry 112:409–422

    Article  CAS  Google Scholar 

  • Trimmer M, Nicholls JC (2009) Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic. Limnol.Oceanogr 54(2):577–589

    Article  CAS  Google Scholar 

  • Trimmer M, Nicholls JC, Deflandre B (2003) Anaerobic ammonium oxidation measured in sediments along the Thames estuary. United Kingdom Appl Environ Microb 69:6447–6454

    Article  CAS  Google Scholar 

  • Welsh DT (2000) Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol Lett 3:58–71

    Article  Google Scholar 

  • Xu XWH, GH F, Zou XQ, Ge CD, Zhao YF (2017) Diurnal variations of carbon dioxide, methane, and nitrous oxide fluxes from invasive Spartina Alterniflora dominated coastal wetland in northern Jiangsu Province. Acta Oceanol Sin 36(4):105–113

    Article  CAS  Google Scholar 

  • Yang W, An SQ, Zhao H, LQ X, Qiao WJ, Chen XL (2016a) Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol Eng 86:174–182

    Article  Google Scholar 

  • Yang W, Jeelani N, Leng X, Chen XL, An SQ (2016b) Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Sci Rep 6:26880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Yan YE, Jiang F, Leng X, Chen XL, An SQ (2016c) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408:443–456

    Article  CAS  Google Scholar 

  • Yin GY, Hou LJ, Liu M, Liu ZF, Gardner WS (2014) A novel membrane inlet mass spectrometer method to measure 15NH4 + for isotope-enrichment experiments in aquatic ecosystems. Environ Sc technol 48:9555–9562

    Article  CAS  Google Scholar 

  • Yoshida M, Ishii S, Otsuka S, Senoo K (2009) Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biol Biochem 41:2044–2051

    Article  CAS  Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Xiang J, Lin YX (2014) Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Appl Microbiol Biotechnol 98:1817–1829

    Article  CAS  PubMed  Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina Alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    Article  PubMed  Google Scholar 

  • Zhang YH, Ding WS, Luo JF, Donnison A (2010) Changes in soil organic carbon dynamics in an eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol Biochem 42:1712–1720

    Article  CAS  Google Scholar 

  • Zhang WL, Zeng C, Tong C, Zhang ZC, Huang JF (2011) Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan wetland, Minjiang River estuary by remote sensing. Procedia Environ Sci 10:2472–2477

    Article  Google Scholar 

  • Zhang WL, Zeng CS, Tong C, Zhai SJ, Lin X, Gao DZ (2015) Spatial distribution of phosphorus speciation in marsh sediments along a hydrologic gradient in a subtropical estuarine wetland, China. Estuar Coast Shelf Sci 154:30–38

    Article  CAS  Google Scholar 

  • Zhao H, Yang W, Xia L, Qiao YJ, Xiao Y, Cheng XL (2015a) An SQ (2015b) nitrogen-enriched eutrophication promotes the invasion of Spartina alterniflora in coastal China. Clean Soil Air Water 43(2):244–250

    Article  CAS  Google Scholar 

  • Zhao JW, Zhu DW, Fan JN, Huang YM, Zhou WB (2015b) Seasonal variation of ANAMMOX and denitrification in sediments of two eutrophic urban lakes. Pol J Environ Stud 24:2779–2783

    Article  CAS  Google Scholar 

  • Zheng YL, Hou LJ, Liu M, Liu ZF, Li XF, Lin XB, Yin GY, Gao J, CD Y, Wang R, Jiang XF (2016a) Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Sci Rep 6:21338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YL, Hou LJ, Liu M, Yin GY, Gao J, Jiang XF, Lin XB, Li XF, Yu CD, Wang R (2016b) Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina Alterniflora. Appl Microbiolo Biot 100(18):8203–8212

    Article  CAS  Google Scholar 

  • Zuo P, Zhao SH, Liu CA, Wang CH, Liang YB (2012) Distribution of Spartina spp. along China's coast. Ecol Eng 40:160–166

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (grant numbers: 41130525; 41371451). We thank Shixue Wu for assistance the laboratory experiments and data analyses. Many thanks are given to anonymous reviewers and editor for constructive comments and valuable suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Additional information

Responsible Editor: Paul Bodelier.

Electronic supplementary material

ESM 1

(DOC 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Li, X., Lin, X. et al. Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: Dynamics and environmental implications. Plant Soil 421, 383–399 (2017). https://doi.org/10.1007/s11104-017-3464-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3464-x

Keywords

Navigation