Skip to main content
Log in

Is pH the key reason why some Lupinus species are sensitive to calcareous soil?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Previous studies have shown that pH, rather than calcium (Ca), is the main reason why some Lupinus species are sensitive to nutrient solutions mimicking calcareous soils; however, a hydroponic system is quite different from soil systems, and plants may respond differently to these two growing conditions. Thus, studies with Lupinus species grown in calcareous soils are needed.

Methods

Two calcicole and two calcifuge species were grown in river sand with different Ca forms and amounts, pH levels, and [bicarbonate (HCO3)] (HCO3 concentration, which is produced by calcium carbonate (CaCO3)). Leaf symptoms, leaf area, gas exchange, biomass, and root morphology were recorded; whole leaf and root nutrient concentrations were analysed.

Results

We observed leaf chlorosis of the youngest leaves under high pH (adjusted by KOH) and high pH + high Ca (representing high [HCO3], high pH and high Ca) treatments for all Lupinus species. However, after 2 weeks, leaf chlorosis of all Lupinus species under high pH started to disappear, with calcicole species fully, and calcifuge species only partly recovering. Leaf chlorosis symptoms of calcicole species under high pH + high Ca partly disappeared as well, while those of calcifuge species did not disappear at all.

Conclusions

High pH (resulting from either KOH or HCO3) inhibited root growth, and subsequently uptake of some nutrients and shoot growth of Lupinus species. However, the strong buffering capacity of HCO3 is the key factor determining if Lupinus species can survive in calcareous soils. Among all studied Lupinus species, L. pilosus was the most tolerant to high [HCO3] and/or high pH, followed by L. cosentinii and L. angustifolius, while L. hispanicus was the most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd-Alla MH (1999) Nodulation and nitrogen fixation of Lupinus species with Bradyrhizobium (lupin) strains in iron-deficient soil. Biol Fertil Soils 28:407–415

    Article  CAS  Google Scholar 

  • Bertoni GM, Pissaloux A, Morard P, Sayag DR (1992) Bicarbonate-pH relationship with iron chlorosis in white lupine. J Plant Nutr 15:1509–1518

    Article  CAS  Google Scholar 

  • Brand JD, Tang C, Rathjen AJ (1999) Adaptation of Lupinus angustifolius L. and L. pilosus Murr. to calcareous soils. Aust J Agric Res 50:1027–1034

    Article  Google Scholar 

  • Brand JD, Tang C, Graham RD (2000) The effect of soil moisture on the tolerance of Lupinus pilosus genotypes to a calcareous soil. Plant Soil 219:263–271

    Article  CAS  Google Scholar 

  • Brand JD, Tang C, Rathjen AJ (2002) Screening rough-seeded lupins (Lupinus pilosus Murr. and Lupinus atlanticus Glads.) for tolerance to calcareous soils. Plant Soil 245:261–275

    Article  CAS  Google Scholar 

  • British Columbia Ministry of Forests (1991) Field guide to nodulation and nitrogen fixation assessment. Land management handbook, field guide insert 4. BCMF, Smithers

    Google Scholar 

  • Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York

    Google Scholar 

  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. J Chromatogr 1011:233–240

    Article  CAS  Google Scholar 

  • Chevalier S, Paris N (1980) Absorption et fixation du calcium par les chloroplastes de Lupin jaune (Lupinus luteus L.) calcifuge et de féverole (Vicia faba L.) calcicole. Physiol Vég 19:23–31

    Google Scholar 

  • Chevalier S, Paris-Pireyre N (1984) Relations entre les concentrations en calcium, magnésium et phosphore dans les mitochondries, les proplastes et les chloroplastes du lupin janue et de la féverole et le taux de calcium du milieu de culture. J Phys Colloq 45:507–510

    Article  Google Scholar 

  • Clements JC, Cowling WA (1990) The Australian lupin collection - passport data for wild and semi-domesticated accessions introduced into Australia to 1990. Western Australian Department of Agriculture, Perth

    Google Scholar 

  • Coulombe BA, Chaney RL, Wiebold WJ (1984) Bicarbonate directly induces iron chlorosis in susceptible soybean cultivars1. Soil Sci Soc Am J 48:1297–1301

    Article  CAS  Google Scholar 

  • De Silva DLR, Mansfield TA (1994) The stomatal physiology of calcicoles in relation to calcium delivered in the xylem sap. Proc R Soc Lond Ser B Biol Sci 257:81–85

    Article  Google Scholar 

  • De Silva DLR, Ruiz LP, Atkinson CJ, Mansfield TA (1994) Physiological disturbances caused by high rhizospheric calcium in the calcifuge Lupinus luteus. J Exp Bot 45:585–590

    Article  Google Scholar 

  • Ding W, Clode PL, Clements JC, Lambers H (2018a) Effects of calcium and its interaction with phosphorus on the nutrient status and growth of three Lupinus species. Physiol Plant 163:386–398

    Article  CAS  Google Scholar 

  • Ding W, Clode PL, Clements JC, Lambers H (2018b) Sensitivity of different Lupinus species to calcium under a low phosphorus supply. Plant Cell Environ 41:1512–1523

    Article  CAS  PubMed  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8:1–27

    Article  Google Scholar 

  • George E, Horst WJ, Neumann E (2012) Adaptation of plants to adverse chemical soil conditions in: P Marschner (ed) Marschner's mineral nutrition of higher plants, Third edn. Academic, San Diego

    Google Scholar 

  • Gladstones JS (1970) Lupins as crop plants. Field Crop Abstracts 23:123–148

    Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Jefferies RL, Willis AJ (1964) Studies on the calcicole-calcifuge habit: II. The influence of calcium on the growth and establishment of four species in soil and sand cultures. J Ecol 52:691–707

    Article  Google Scholar 

  • Jessop RS, Roth G, Sale P (1990) Effects of increased levels of soil CaCO3 on lupin (Lupinus angustifolius) growth and nutrition. Soil Res 28:955–962

    Article  CAS  Google Scholar 

  • Kerley SJ (2000) The effect of soil liming on shoot development, root growth, and cluster root activity of white lupin. Biol Fertil Soils 32:94–101

    Article  CAS  Google Scholar 

  • Kerley SJ, Huyghe C (2001) Comparison of acid and alkaline soil and liquid culture growth systems for studies of shoot and root characteristics of white lupin (Lupinus albus L.) genotypes. Plant Soil 236:275–286

    Article  CAS  Google Scholar 

  • Kerley SJ, Huyghe C (2002) Stress-induced changes in the root architecture of white lupin (Lupinus albus) in response to pH, bicarbonate, and calcium in liquid culture. Ann Appl Biol 141:171–181

    Article  CAS  Google Scholar 

  • Kerley SJ, Shield IF, Huyghe C (2001) Specific and genotypic variation in the nutrient content of lupin species in soils of neutral and alkaline pH. Aust J Agric Res 52:93–102

    Article  Google Scholar 

  • Kirkby E (2012) Introduction, definition and classification of nutrients. In: Marschner P (ed) Marschner's mineral nutrition of higher plant, Third edn. Academic, San Diego

    Google Scholar 

  • Kosegarten H, Koyro H-W (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiol Plant 113:515–522

    Article  CAS  Google Scholar 

  • Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupins (lupinus, fabaceae). Am J Bot 100:263–288

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Li C (2003) Differences in cluster-root formation and carboxylate exudation in Lupinus albus L. under different nutrient deficiencies. Plant Soil 248:221–227

    Article  CAS  Google Scholar 

  • Liu A, Tang C (1999) Comparative performance of Lupinus albus genotypes in response to soil alkalinity. Crop Past Sci 50:1435–1442

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin SB, Wimmer R (1999) Tansley review no. 104 calcium physiology and terrestrial ecosystem processes. New Phytol 142:373–417

    Article  CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Mengel K, Breininger MT, Bübl W (1984) Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil. Plant Soil 81:333–344

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481

    Article  Google Scholar 

  • Neumann G, Römheld V (2012) Rhizosphere chemistry in relation to plant nutrition in: P Marschner (ed) Marschner's mineral nutrition of higher plants, Third edn. Academic, San Diego

    Google Scholar 

  • Pang J, Tibbett M, Denton MD, Lambers H, Siddique KHM, Bolland MDA, Revell CK, Ryan MH (2010) Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant Soil 328:133–143

    Article  CAS  Google Scholar 

  • Pang J, Yang J, Ward P, Siddique KHM, Lambers H, Tibbett M, Ryan M (2011) Contrasting responses to drought stress in herbaceous perennial legumes. Plant Soil 348:299

    Article  CAS  Google Scholar 

  • Parker DR, Norvell WA, Sparks DL (1999) Advances in solution culture methods for plant mineral nutrition research. Adv Agron 65:151–213

    Article  CAS  Google Scholar 

  • Peiter E, Yan F, Schubert S (2001) Lime-induced growth depression in Lupinus species: are soil pH and bicarbonate involved? J Plant Nutr Soil Sci 164:165–172

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods: Australasia. CSIRO publishing

  • Raza S, Abdel-Wahab A, Jørnsgård B, Christiansen JL (2000) Calcium tolerance and ion uptake of Egyptian lupin landraces on calcareous soils. Afr Crop Sci J 9:393–400

    Google Scholar 

  • Rengel Z (2000) Manganese uptake and transport in plants. In: Astrid S, Helmut S (eds) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Romera FJ, Alcántara E, de la Guardia MD (1992) Effects of bicarbonate, phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants. J Plant Nutr 15:1519–1530

    Article  CAS  Google Scholar 

  • Tang C, Robson AD (1993) pH above 6.0 reduces nodulation in Lupinus species. Plant Soil 152:269–276

    Article  Google Scholar 

  • Tang C, Robson AD (1995) Nodulation failure is important in the poor growth of two lupin species on an alkaline soil. Anim Prod Sci 35:87–91

    Article  Google Scholar 

  • Tang C, Thomson BD (1996) Effects of solution pH and bicarbonate on the growth and nodulation of a range of grain legume species. Plant Soil 186:321–330

    Article  CAS  Google Scholar 

  • Tang C, Longnecker NE, Thomson CJ, Greenway H, Robson AD (1992) Lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) roots differ in their sensitivity to pH above 6.0. J Plant Physiol 140:715–719

    Article  CAS  Google Scholar 

  • Tang C, Buirchell BJ, Longnecker NE, Robson AD (1993a) Variation in the growth of lupin species and genotypes on alkaline soil. Plant Soil 155:513–516

    Article  Google Scholar 

  • Tang C, Kuo J, Longnecker NE, Thomson CJ, Robson AD (1993b) High pH causes disintegration of the root surface in Lupinus angustifolius L. Ann Bot 71:201–207

    Article  Google Scholar 

  • Tang C, Robson AD, Adams H (1995a) High Ca is not the primary factor in poor growth of Lupinus angustifolius L. in high pH soil. Crop Past Sci 46:1051–1062

    Article  CAS  Google Scholar 

  • Tang C, Robson AD, Longnecker NE, Buirchell BJ (1995b) The growth of Lupinus species on alkaline soils. Crop Past Sci 46:255–268

    Article  Google Scholar 

  • Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour—contribution to a debate. Folia Geobot 38:419–428

    Article  Google Scholar 

  • Tyler G, Ström L (1995) Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Ann Bot 75:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentinuzzi F, Mimmo T, Cesco S, Al Mamun S, Santner J, Hoefer C, Oburger E, Robinson B, Lehto N (2015) The effect of lime on the rhizosphere processes and elemental uptake of white lupin. Environ Exp Bot 118:85–94

    Article  CAS  Google Scholar 

  • Waters BM, Troupe GC (2012) Natural variation in iron use efficiency and mineral remobilization in cucumber (Cucumis sativus). Plant Soil 352:185–197

    Article  CAS  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PF (1990) Soil and plant factors relating to the poor growth of Lupinus species on fine-textured, alkaline soils - a review. Aust J Agric Res 41:871–890

    Article  Google Scholar 

  • White PF, Robson AD (1989) Lupin species and peas vary widely in their sensitivity to Fe deficiency. Aust J Agric Res 40:539–547

    Article  CAS  Google Scholar 

  • White PF, Robson AD (1990) Response of lupins (Lupinus angustifolius L.) and peas (Pisum sativum L.) to Fe deficiency induced by low concentrations of Fe in solution or by addition of HCO3 . Plant Soil 125:39–47

    Article  CAS  Google Scholar 

  • Wu G, Li M, Zhong F, Fu C, Sun J, Yu L (2011) Lonicera confusa has an anatomical mechanism to respond to calcium-rich environment. Plant Soil 338:343–353

    Article  CAS  Google Scholar 

  • Yue Ao T, Chaney RL, Korcak RF, Fan F, Faust M (1987) Influence of soil moisture level on apple iron chlorosis development in a calcareous soil. Plant Soil 104:85–92

    Article  Google Scholar 

  • Zohlen A, Tyler G (2004) Soluble inorganic tissue phosphorus and calcicole–calcifuge behaviour of plants. Ann Bot 94:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zribi K, Gharsalli M (2002) Effect of bicarbonate on growth and iron nutrition of pea. J Plant Nutr 25:2143–2149

    Article  CAS  Google Scholar 

  • Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Spring Science and Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgements

Wenli Ding was supported by a Scholarship for International Research Fees (SIRF) and a University International Stipend (UIS) and UIS Top-Up scholarship. This research project was supported by an Australian Research Council (ARC) funded Discovery Project grant (DP130100005) awarded to Hans Lambers and Peta L. Clode, and by the UWA Institute of Agriculture. Thanks to Michael Smirk for assisting with ICP-OES analyses. Thanks to Agathe Darret for her help throughout the whole project. Thanks to Greg Cawthray for assisting with HPLC analyses. Thanks to Patrick E. Hayes for internal review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Ding.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

ESM 1

(PDF 320 kb)

ESM 2

(PDF 321 kb)

ESM 3

(PDF 262 kb)

ESM 4

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Clode, P.L. & Lambers, H. Is pH the key reason why some Lupinus species are sensitive to calcareous soil?. Plant Soil 434, 185–201 (2019). https://doi.org/10.1007/s11104-018-3763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3763-x

Keywords

Navigation