Skip to main content
Log in

Dynamics of nonstructural carbohydrates in seagrass Thalassia hemprichii and its response to shading

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

A field survey was performed to examine nonstructural carbohydrate (NSC) dynamics in seagrass Thalassia hemprichii at the Xincun Bay in southern China. An indoor experiment to investigate the response of NSC in T. hemprichii to shade was conducted. Belowground tissue of T. hemprichii was the dominant site of NSC reserves, and soluble sugar was the primary storage compound. The starch content of belowground tissue was lower in high intertidal areas than in low intertidal areas, indicating that the longer air exposure in high intertidal areas resulted in less NSC synthesis and less accumulation of NSC in T. hemprichii. The lowest level of soluble sugar and its proportion to NSC in belowground tissue were observed near the cage culture area, where the nutrient concentration in water and sediment was the highest; while the highest level of that was observed near the coastal shrimp farm, Where salinity was the lowest. Soluble sugar in belowground tissue showed the following trend: summer>spring>winter>autumn. This corresponded to seasonal changes in the intensity of light. Leaf sugar accumulated during the autumn-winter period, providing a carbon and energy source for flower bud formation and seed germination. Short-term shading decreased NSC accumulation. Collectively, these results suggest that nutrient enrichment, freshwater discharge and exposure to air affect NSC dynamics in T. hemprichii. Light intensity, flower bud formation, and seed germination were all found to induce seasonal variations in NSC in T. hemprichii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcoverro T, Manzanera M, Romero J. 2001. Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves. Marine Ecology Progress Series, 211: 105–116

    Article  Google Scholar 

  • Alcoverro T, Zimmerman R, Kohrs D, et al. 1999. Resource allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Marine Ecology Progress Series, 187: 121–131

    Article  Google Scholar 

  • Biber P D, Kenworthy W J, Paerl H W. 2009. Experimental analysis of the response and recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. Journal of Experimental Marine Biology and Ecology, 369(2): 110–117

    Article  Google Scholar 

  • Björk M, Short F, McLeod E, et al. 2008. Managing Seagrasses for Resilience to Climate Change. Gland: International Union for Conservation of Nature and Natural Resources, 56

    Google Scholar 

  • Brun F G, Olive I, Malta E J, et al. 2008. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 365: 67–75

    Article  Google Scholar 

  • Burke M K, Dennison W C, Moore K A. 1996. Non-structural carbohydrate reserves of eelgrass Zostera marina. Marine Ecology Progress Series, 137: 195–201

    Article  Google Scholar 

  • Burkholder J A M, Mason K M, Glasgow J H B. 1992. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Marine Ecology Progress Series, 81: 163–178

    Article  Google Scholar 

  • Burkholder J A M, Tomasko D A, Touchette B W. 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology, 350(1–2): 46–72

    Article  Google Scholar 

  • Cabaco S, Santos R. 2007. Effects of burial and erosion on the seagrass Zostera noltii. Journal of Experimental Marine Biology and Ecology, 340(2): 204–212

    Article  Google Scholar 

  • Chollett I, Bone D, Pérez D. 2007. Effects of heavy rainfall on Thalassia testudinumbeds. Aquatic Botany, 87(3): 189–195

    Article  Google Scholar 

  • Collier C J, Lavery P, Ralph P, et al. 2009. Shade-induced response and recovery of the seagrass Posidonia sinuosa. Journal of Experimental Marine Biology and Ecology, 370(1–2): 89–103

    Article  Google Scholar 

  • Collier C J, Waycott M, Ospina A G. 2011. Responses of four Indo-West Pacific seagrass species to shading. Marine Pollution Bulletin, 65: 342–354

    Article  Google Scholar 

  • De Rosa S, Zavodnik N, De Stefano S, et al. 1990. Seasonal Changes of biomass and soluble carbohydrates in the seagrass Zostera noltii Hornem. Botanica Marina, 33(5): 411–414

    Google Scholar 

  • Dennison W C. 2009. Global trajectories of seagrasses, the biological sentinels of coastal ecosystems. In: Duarte CM, ed. Global Loss of Coastal Habitats: Rates, Causes and Consequences. Madrid: Fundacion BBVA, 91–108

    Google Scholar 

  • Duarte C M, Gattuso J. 2010. Seagrass meadows. In: Cleveland C J, ed. Encyclopedia of Earth. Washington D C: Environmental Information Coalition, National Council for Science and the Environment

    Google Scholar 

  • Eklöf J, McMahon K, Lavery P. 2009. Effects of multiple disturbances in seagrass meadows: shading decreases resilience to grazing. Marine and Freshwater Research, 60(12): 1317–1327

    Article  Google Scholar 

  • Fokeera-Wahedally S, Bhikajee M. 2005. The effects of in situ shading on the growth of a seagrass, Syringodium isoetifolium. Estuarine, Coastal and Shelf Science, 64(2–3): 149–155

    Article  Google Scholar 

  • General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Aministration of the People’s Republic of China. 2008. GB17378.4-2007. The specification for marine monitoring, part 4: seawater analysis (in Chinese). Beijing: the Standards Press of China

    Google Scholar 

  • Huang Xiaoping, Huang Liangmin, Li Yinghong, et al. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chinese Science Bulletin, 51: 136–142

    Article  Google Scholar 

  • Invers O, Kraemer G, Pérez M, et al. 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 303(1): 97–114

    Article  Google Scholar 

  • Jupp B, Durako M, Kenworthy W, et al. 1996. Distribution, abundance, and species composition of seagrasses at several sites in Oman. Aquatic Botany, 53(3–4): 199–213

    Article  Google Scholar 

  • Koops A J, Groeneveld HW. 1990. Mobilization of endosperm reserves and uptake of sucrose and valine by the cotyledons of Euphorbia lathyris L. Journal of Experimental Botany, 41(10): 1279–1285

    Article  Google Scholar 

  • Lazar A C, Dawes C J. 1991. A seasonal study of the seagrass Ruppia maritima L. in Tampa Bay, Florida. Organic constituents and tolerances to salinity and temperature. Botanica Marina, 34: 265–269

    Article  Google Scholar 

  • Lee K S, Dunton K. 1996. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Marine Ecology Progress Series, 143: 201–210

    Article  Google Scholar 

  • Lee K S, Dunton K. 1997. Effect of in situ light reduction on themaintenance, growth and partitioning of carbon resources in Thalassia testudinum banks ex König. Journal of Experimental Marine Biology and Ecology, 210(1): 53–73

    Article  Google Scholar 

  • Lee K S, Park S R, KimY K. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology, 350(1–2): 144–175

    Article  Google Scholar 

  • Leoni V, Vela A, Pasqualini V, et al. 2008. Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: a review. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(2): 202–220

    Article  Google Scholar 

  • Longstaff B, Dennison W. 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquatic Botany, 65: 105–121

    Article  Google Scholar 

  • Mackey P, Collier C, Lavery P. 2007. Effects of experimental reduction of light availability on the seagrass Amphibolis griffithii. Marine Ecology Progress Series, 342: 117–126

    Article  Google Scholar 

  • Manzanera M, Pérez M, Romero J. 1998. Seagrass mortality due to oversedimentation: an experimental approach. Journal of Coastal Conservation, 4(1): 67–70

    Article  Google Scholar 

  • Marbà N, Duarte CM. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 16(8): 2366–2375

    Article  Google Scholar 

  • Murphy L R, Kinsey S T, Durako M J. 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany, 75(4): 293–309

    Article  Google Scholar 

  • Neckles H A, Short F T, Barker S, et al. 2005. Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine: dragging impacts and habitat recovery. Marine Ecology Progress Series, 285: 57–73

    Article  Google Scholar 

  • Nejrup L B, Pedersen MF. 2008. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany, 88(3): 239–246

    Article  Google Scholar 

  • Olivé I, Brun F G, Vergara J J, et al. 2007. Effects of light and biomass partitioning on growth, photosynthesis and carbohydrate content of the seagrass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 345: 90–100

    Article  Google Scholar 

  • Palacios S, Zimmerman R. 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series, 344: 1–13

    Article  Google Scholar 

  • Peralta G, Pérez-Lloréns J, Hernández I, et al. 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 269(1): 9–26

    Article  Google Scholar 

  • Pirc H. 1985. Growth dynamics in Posidonia oceanica (L.) Delile. Marine Ecology, 6(2): 141–165

    Article  Google Scholar 

  • Pirc H. 1989. Seasonal changes in soluble carbohydrates, starch, and energy content in Mediterranean seagrasses. Marine Ecology, 10(2): 97–105

    Article  Google Scholar 

  • Pollard P, Greenway M. 1993. Photosynthetic characteristics of sea-grasses (Cymodocea serrulata, Thalassia hemprichii and Zoster-a capricorni) in a low-light environment, with a comparison of leaf-marking and lacunal-gas measurements of productivity. Australian Journal of Marine and Freshwater Research, 44(1): 127–139

    Google Scholar 

  • Quarmby C, Allen S E. 1989. Organic Constituents. Oxford: Blackwell Scientific Press

    Google Scholar 

  • Ralph P, Durako M, Enriquez S, et al. 2007. Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology, 350(1–2): 176–193

    Article  Google Scholar 

  • Romero J, Martinez-Crego B, Alcoverro T, et al. 2007. Amultivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD). Marine Pollution Bulletin, 55: 196–204

    Article  Google Scholar 

  • Ruíz J, Marín-Guirao L, Sandoval-Gil J. 2009. Responses of the Mediterranean seagrass Posidonia oceanica to in situ simulated salinity increase. Botanica Marina, 52(5): 459–470

    Google Scholar 

  • Ruíz J, Romero J. 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Marine Ecology Progress Series, 215: 107–120

    Article  Google Scholar 

  • Serrano O, Mateo M, Renom P. 2011. Seasonal response of Posidonia oceanica to light disturbances. Marine Ecology Progress Series, 423: 29–38

    Article  Google Scholar 

  • Shafer D J, Sherman T D, Wyllie-Echeverria S. 2007. Do desiccation tolerances control the vertical distribution of intertidal seagrasses?. Aquatic Botany, 87(2): 161–166

    Article  Google Scholar 

  • Short F, Carruthers T, Dennison W, et al. 2007. Global seagrass distribution and diversity: A bioregionalmodel. Journal of Experimental Marine Biology and Ecology, 350(1–2): 3–20

    Article  Google Scholar 

  • Sugiura H, Hiroe Y, Suzuki T, et al. 2009. The carbohydrate catabolism of Zostera marina influenced by lower salinity during the pregermination stage. Fisheries Science, 75(5): 1205–1217

    Article  Google Scholar 

  • Touchette B W. 2007. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology, 350(1–2): 194–215

    Article  Google Scholar 

  • Touchette B W, Burkholder J A M. 2002. Seasonal variations in carbon and nitrogen constituents in eelgrass (Zostera marina L.) as influenced by increased temperature and water-column nitrate. Botanica Marina, 45: 23–34

    Article  Google Scholar 

  • Uy W. 2001. Functioning of Philippine Seagrass Species Under Deteriorating Light Conditions. Boca Raton: the Chemical Rubber Company Press

    Google Scholar 

  • Waycott M, Collier C, McMahon K, et al. 2007. Vulnerability of sea-grasses in the Great Barrier Reef to climate change. In: Johnson J E, Marshall P A, eds. Climate Change and the Great Barrier Reef. Townsville: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, 193–235

    Google Scholar 

  • Xu Zhanzhou, Huang Liangmin, Huang Xiaoping, et al. 2008. A primary study on sexual reproduction of seagrass Thalassia hemprichii at Xincun Bay. Journal of Tropical Oceanography (in Chinese), 27(2): 60–63

    Google Scholar 

  • Yemm E, Willis A. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57: 508–514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Huang.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41076069 and 40776086; the Project of Environmental Quality Evaluation of Seagrass Bed in South China Sea under contract No. DOMEP (MEA)-01-03; the Public Science and Technology Research Funds Projects of Ocean under contract No. 201305030; the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No. SQ201219.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Huang, X. & Zhang, J. Dynamics of nonstructural carbohydrates in seagrass Thalassia hemprichii and its response to shading. Acta Oceanol. Sin. 32, 61–67 (2013). https://doi.org/10.1007/s13131-013-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-013-0342-0

Key words

Navigation