Skip to main content

Advertisement

Log in

Warming has a larger and more persistent effect than elevated CO2 on growing season soil nitrogen availability in a species-rich grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The terrestrial biosphere’s ability to capture carbon is dependent upon soil nitrogen (N) availability, which might reduce as CO2 increases, but global warming has the potential to offset CO2 effects. Here we examine the interactive impact of elevated CO2 (eCO2) and warming on soil N availability and transformations in a low-fertility native grassland in Tasmania, Australia.

Methods

Using ion exchange membranes, we examined soil nitrogen availability during the growing season from 2004 to 2010 in the TasFACE experiment. We also estimated soil N transformation rates using laboratory incubations.

Results

Soil N availability varied strongly over time but was more than doubled by experimental warming of 2°C, an impact that was consistent from the fifth year of the experiment to its conclusion. Elevated CO2 reduced soil N availability by ~28%, although this varied strongly over time. Treatment effects on potential N mineralisation also varied strongly from year to year but tended to be reduced by eCO2 and increased by warming.

Conclusions

These results suggest that warming should increase soil N availability more strongly than it is suppressed by eCO2 in low fertility grasslands such as this, stimulating terrestrial carbon sinks by preventing eCO2-induced nitrogen limitation of primary productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519. https://doi.org/10.1111/1365-2745.12149

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852. https://doi.org/10.1002/ece3.311

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorsne A-K, Rutting T, Ambus P (2014) Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry 120:191–201. https://doi.org/10.1007/s10533-014-9990-1

    Article  Google Scholar 

  • Bollmann A, Conrad R (1998) Influence of O-2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Chang Biol 4:387–396

    Article  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744. https://doi.org/10.1128/AEM.02188-07

    Article  CAS  PubMed  Google Scholar 

  • Bowatte S, Asakawa S, Okada M, Kobayashi K, Kimura M (2007) Effect of elevated atmospheric CO concentration on ammonia oxidizing bacteria communities inhabiting in rice roots. Soil Sci Plant Nutr 53 (1):32–39

  • Cain ML, Subler S, Evans JP, Fortin MJ (1999) Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118 (4):397–404

  • Canadell JG, Pataki DE, Gifford RM, Houghton RA, Luo Y, Raupach MR, Smith P, Steffen W (2008) Saturation of the terrestrial carbon sink. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer-Verlag, Berlin

    Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci U S A 104:4990–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera AL, Vargas DN, Campanella MV, Bertiller MB, Sain CL, Mazzarino MJ (2005) Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecol 181:139–151

    Article  Google Scholar 

  • Carrillo Y, Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM (2012) Controls over soil nitrogen pools in a semiarid grassland under elevated CO2 and warming. Ecosystems 15:761–774. https://doi.org/10.1007/s10021-012-9544-0

    Article  CAS  Google Scholar 

  • Chen ZZ, Zhang JB, Xiong ZQ, Pan GX, Muller C (2016) Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature. Soil Biol Biochem 94:80–87. https://doi.org/10.1016/j.soilbio.2015.11.025

    Article  CAS  Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460. https://doi.org/10.1007/s10265-013-0565-3

    Article  PubMed  Google Scholar 

  • de Graaff MA, Six J, van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778–786

    Article  PubMed  Google Scholar 

  • Development Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, de Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Chang Biol 18:2681–2693. https://doi.org/10.1111/j.1365-2486.2012.02745.x

    Article  PubMed  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–437. https://doi.org/10.1111/j.1469-8137.2010.03293.x

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012) Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:807–815. https://doi.org/10.1111/j.1469-8137.2012.04349.x

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Treseder KK, Schlesinger WH, DeLucia EH, Finzi AC (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357. https://doi.org/10.1111/j.1461-0248.2011.01593.x

    Article  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Ebersberger D, Werrnbter N, Niklaus PA, Kandeler E (2004) Effects of long term CO2 enrichment on microbial community structure in calcareous grassland. Plant Soil 264:313–323

    Article  CAS  Google Scholar 

  • Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25

    Article  PubMed  Google Scholar 

  • Franck VM, Hungate BA, Chapin FS, Field CB (1997) Decomposition of litter produced under elevated CO2: dependence on plant species and nutrient supply. Biogeochemistry 36:223–237

    Article  Google Scholar 

  • Gahrooee FR (1998) Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Glob Chang Biol 4:667–677

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Hasegawa S, Macdonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited eucalyptus woodland. Glob Chang Biol 22:1628–1643. https://doi.org/10.1111/gcb.13147

    Article  PubMed  Google Scholar 

  • Hattenschwiler S, Buhler S, Korner C (1999) Quality, decomposition and isopod consumption of tree litter produced under elevated CO2. Oikos 85:271–281

    Article  Google Scholar 

  • Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096. https://doi.org/10.1111/j.1462-2920.2012.02855.x

    Article  CAS  PubMed  Google Scholar 

  • Hirschel G, Körner C, Arnone JA (1997) Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hofmockel KS, Schlesinger WH, Jackson RB (2007) Effects of elevated atmospheric carbon dioxide on amino acid and NH4+−N cycling in a temperate pine ecosystem. Glob Chang Biol 13:1950–1959. https://doi.org/10.1111/j.1365-2486.2007.01411.x

    Article  Google Scholar 

  • Hofmockel KS, Gallet-Budynek A, McCarthy HR, Currie WS, Jackson RB, Finzi AC (2011) Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale N-15 study. Glob Chang Biol 17:3338–3350. https://doi.org/10.1111/j.1365-2486.2011.02465.x

    Article  Google Scholar 

  • Hovenden MJ, Miglietta F, Zaldei A, Vander Schoor JK, Wills KE, Newton PCD (2006) The TasFACE climate-change impacts experiment: design and performance of combined elevated CO2 and temperature enhancement in a native Tasmanian grassland. Aust J Bot 54:1–10

    Article  Google Scholar 

  • Hovenden MJ, Newton PCD, Carran RA, Theobald P, Wills KE, Schoor JKV, Williams AL, Osanai Y (2008a) Warming prevents the elevated CO2-induced reduction in available soil nitrogen in a temperate, perennial grassland. Glob Chang Biol 14:1018–1024. https://doi.org/10.1111/j.1365-2486.2008.01558

    Article  Google Scholar 

  • Hovenden MJ, Newton PCD, Wills KE, Janes JK, Williams AL, Vander Schoor JK, Nolan MJ (2008b) Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytol 180:143–152

    Article  PubMed  Google Scholar 

  • Hovenden MJ, Wills KE, Chaplin RE, Vander Schoor JK, Williams AL, Osanai Y, Newton PCD (2008c) Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob Chang Biol 14:1633–1641

    Article  Google Scholar 

  • Hovenden MJ, Newton PCD, Wills KE (2014) Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511:583–586. https://doi.org/10.1038/nature13281

    Article  CAS  PubMed  Google Scholar 

  • Hovenden MJ, Porter M, Newton PCD (2017) Elevated CO2 and warming effects on grassland plant mortality are determined by the timing of rainfall. Ann Bot 119:1225–1233. https://doi.org/10.1093/aob/mcx006

    Article  PubMed  Google Scholar 

  • Hu S, Firestone MK, Chapin IIIFS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends Ecol Evol 14:433–437

    Article  CAS  PubMed  Google Scholar 

  • Hungate BA, Duval BD, Dijkstra P, Johnson DW, Ketterer ME, Stiling P, Cheng W, Millman J, Hartley A, Stover DB (2014) Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland. Biogeosciences 11:3323–3337. https://doi.org/10.5194/bg-11-3323-2014

    Article  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants - an important N uptake pathway? Soil Biol Biochem 37:413–423

  • Kasurinen A, Peltonen PA, Julkunen-Tiitto R, Vapaavuori E, Nuutinen V, Holopainen T, Holopainen JK (2007) Effects of elevated CO2 and O-3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43

    Article  CAS  Google Scholar 

  • Kemp PR, Waldecker DG, Owensby CE, Reynolds JF, Virginia RA (1994) Effects of elevated CO2 and nitrogen-fertilization pretreatments on decomposition on tallgrass prairie leaf-litter. Plant Soil 165:115–127

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305

    Article  CAS  Google Scholar 

  • Langlois JL, Johnson DW, Mehuys GR (2003) Adsorption and recovery of dissolved organic phosphorus and nitrogen by mixed-bed ion-exchange resin. Soil Sci Soc Am J 67:889–894

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus PER, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard KIM, PriemÉ A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K (2011) Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Chang Biol 17:1884–1899. https://doi.org/10.1111/j.1365-2486.2010.02351.x

    Article  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R: a practical guide. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo Y, Melillo J, Niu S, Beier C, Clark JS, Classen AT, Davidson E, Dukes JS, Evans RD, Field CB, Czimczik CI, Keller M, Kimball BA, Kueppers LM, Norby RJ, Pelini SL, Pendall E, Rastetter E, Six J, Smith M, Tjoelker MG, Torn MS (2011) Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Chang Biol 17:843–854. https://doi.org/10.1111/j.1365-2486.2010.02265.x

    Article  Google Scholar 

  • Ma LN, Lü XT, Liu Y, Guo JX, Zhang NY, Yang JQ, Wang RZ, Bond-Lamberty B (2011) The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China. PLoS ONE 6 (11):e27645

  • McMurtrie RE, Norby RJ, Medlyn BE, Dewar RC, Pepper DA, Reich PB, Barton CVM (2008) Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct Plant Biol 35:521–534

    Article  CAS  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate-change and terrestrial net primary production. Nature 363:234–240. https://doi.org/10.1038/363234a0

    Article  CAS  Google Scholar 

  • Miglietta F, Peressotti A, Primo Vacari F, Zaldei A, De Angelis P, Scarscia Mugnozza G (2001) Free air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Taylor B, Prescott C, Camiré C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999) Litter decomposition rates in Canadian forests. Glob Chang Biol 5:75–82

    Article  Google Scholar 

  • Mueller KE, Hobbie SE, Tilman D, Reich PB (2013) Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob Chang Biol 19:1249–1261. https://doi.org/10.1111/gcb.12096

    Article  PubMed  Google Scholar 

  • Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA (2016) Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol Lett 19:956–966. https://doi.org/10.1111/ele.12634

    Article  CAS  PubMed  Google Scholar 

  • Newton PCD, Lieffering M, Bowatte WMSD, Brock SC, Hunt CL, Theobald PW, Ross DJ, (2010) The rate of progression and stability of progressive nitrogen limitation at elevated atmospheric CO2 in a grazed grassland over 11Â years of Free Air CO2 enrichment. Plant and Soil 336 (1–2):433–441

  • Norby RJ, O'Neill EG, Hood WG, Luxmore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3:203–210

    Article  CAS  PubMed  Google Scholar 

  • Osanai Y, Janes JK, Newton PCD, Hovenden MJ (2015) Warming and elevated CO2 combine to increase microbial mineralisation of soil organic matter. Soil Biol Biochem 85:110–118. https://doi.org/10.1016/j.soilbio.2015.02.032

    Article  CAS  Google Scholar 

  • Osanai Y, Tissue DT, Bange MP, Braunack MV, Anderson IC, Singh BK (2017) Interactive effects of elevated CO2, temperature and extreme weather events on soil nitrogen and cotton productivity indicate increased variability of cotton production under future climate regimes. Agric Ecosyst Environ 246:343–353. https://doi.org/10.1016/j.agee.2017.06.004

    Article  CAS  Google Scholar 

  • Parton WJ, Morgan JA, Wang GM, del Grosso S (2007) Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytol 174:823–834. https://doi.org/10.1111/j.1469-8137.2007.02052.x

    Article  CAS  PubMed  Google Scholar 

  • Pastore MA, Megonigal JP, Langley JA (2016) Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition. Glob Chang Biol 22:391–403. https://doi.org/10.1111/gcb.13112

    Article  PubMed  Google Scholar 

  • Pendall E, Osanai Y, Williams AL, Hovenden MJ (2011) Soil carbon storage under simulated climate change is mediated by plant functional type. Glob Chang Biol 17:505–514. https://doi.org/10.1111/j.1365-2486.2010.02296.x

    Article  Google Scholar 

  • Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ (2005) Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Glob Biogeochem Cycles 19:GB1004

    Article  Google Scholar 

  • Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus Taeda) seedlings as an N-mediated response. Tree Physiol 29:1513–1523. https://doi.org/10.1093/treephys/tpp083

    Article  CAS  PubMed  Google Scholar 

  • Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonie L, Couteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat Clim Chang 3:278–282. https://doi.org/10.1038/nclimate1694

    Article  CAS  Google Scholar 

  • Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J (2004) Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc Natl Acad Sci U S A 101:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006a) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Hungate BA, Luo YQ (2006b) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst 37:611–636

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7:920–924. https://doi.org/10.1038/ngeo2284

    Article  CAS  Google Scholar 

  • Ross DJ, Saggar S, Tate KR, Feltham CW, Newton PCD (1996) Elevated CO2 effects on carbon and nitrogen cycling in grass/clover turves of a Psammaquent soil. Plant Soil 182:185–198

    Article  CAS  Google Scholar 

  • Ross DJ, Newton PCD, Tate KR, Luo D (2013) Impact of a low level of CO2 enrichment on soil carbon and nitrogen pools and mineralization rates over ten years in a seasonally dry, grazed pasture. Soil Biol Biochem 58:265–274. https://doi.org/10.1016/j.soilbio.2012.12.011

    Article  CAS  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  CAS  PubMed  Google Scholar 

  • Rütting T, Andresen L (2015) Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status. Nutr Cycl Agroecosyst 101:285–294. https://doi.org/10.1007/s10705-015-9683-8

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Sherry RA, Weng ES, Arnone JA, Johnson DW, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2008) Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob Chang Biol 14:2923–2936. https://doi.org/10.1111/j.1365-2486.2008.01703.x

    Article  Google Scholar 

  • Skogley EO, Dobermann A, (1996) Synthetic Ion-Exchange Resins: Soil and Environmental Studies. J Environ Qual. 25 (1):13

  • Uselman SM, Qualls RG, Thomas RB (2000) Effects of increased atmospheric CO2, temperature and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.) Plant Soil 284:319–333

    Google Scholar 

  • van Meeteren MM, Tietema A, van Loon EE, Verstraten JM (2008) Microbial dynamics and litter decomposition under a changed climate in a Dutch heathland. Appl Soil Ecol 38:119–127. https://doi.org/10.1016/j.apsoil.2007.09.006

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea - how can it occur. Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH (2003) Soil nitrogen cycling under elevated CO2: a synthesis of forest face experiments. Ecol Appl 13:1508–1514

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded through the Australian Research Council’s Discovery Projects grant scheme. Amity Williams and Jasmine Janes assisted with data collection and Phil Theobald helped with N determinations. We thank the Australian Department of Defence for access to the Pontville Small Arms Range complex. The authors confirm no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Hovenden.

Additional information

Responsible Editor: Zucong Cai

Electronic supplementary material

ESM 1

(DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovenden, M.J., Newton, P.C.D. & Osanai, Y. Warming has a larger and more persistent effect than elevated CO2 on growing season soil nitrogen availability in a species-rich grassland. Plant Soil 421, 417–428 (2017). https://doi.org/10.1007/s11104-017-3474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3474-8

Keywords

Navigation