Skip to main content

Advertisement

Log in

Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status

  • Review Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Nitrogen (N) limitation of terrestrial ecosystems is a crucial factor for predicting how these ecosystems respond and feedback to climate change. Nitrogen availability for plants in terrestrial ecosystems depends on the internal soil N cycle and inputs to the ecosystem via biological N2 fixation. We reviewed the effect of elevated atmospheric CO2 concentrations (eCO2) on gross soil N transformations to advance our understanding of ecosystem responses to eCO2. Overall, neither gross mineralization nor gross nitrification was altered by eCO2. However, emerging from ecosystem specific analysis, we propose a new conceptual model for eCO2 effects on gross mineralization based on ecosystem nutrient status: gross mineralization is only stimulated in N limited ecosystems, but unaffected in phosphorus limited ecosystems. Moreover, the ratio of ammonium oxidation to immobilization is decreased under eCO2, indicating a tighter N cycle with reduced ecosystem N losses. This new conceptual model on N cycle responses to eCO2 should be tested in the future in independent experiments and it provides a new concept for refining mechanistic models of ecosystem responses to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Andresen LC, Michelsen A, Jonasson S, Beier C, Ambus P (2009) Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecol 35:786–796

    Article  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Global Biogeochem Cycles 19:GB1007. doi:10.1029/2004GB002282

    Article  Google Scholar 

  • Barnard R, Barthes L, Leadley PW (2006) Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant Soil 280:91–99

    Article  CAS  Google Scholar 

  • Björsne A-K, Rütting T, Ambus P (2014) Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry. doi:10.1007/s10533-10014-19990-10531

    Google Scholar 

  • De Graaff MA, Van Groenigen KJ, Six J, Hungate BA, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • De Graaff MA, Six J, Van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778–786

    Article  PubMed  Google Scholar 

  • De Graaff MA, Van Kessel C, Six J (2009) Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biol Biochem 41:1094–1103

    Article  Google Scholar 

  • Dijkstra FA, Pendall E, Mosier AC, King JY, Milchunas DG, Morgan JA (2008) Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct Ecol 22:975–982

    Article  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drake JE et al (2011) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol Lett 14:349–357

    Article  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, Van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Dukes JS et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:e319. doi:10.1371/journal.pbio.0030319

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards EJ, McCaffery S, Evans JR (2006) Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward. New Phytol 169:157–167

    Article  CAS  PubMed  Google Scholar 

  • Falster DS, Warton DI, Wright IJ (2003) (S)MATR: standardised major axis tests and routines. http://www.bio.mq.edu.au/ecology/SMATR/

  • Finzi AC, Schlesinger WH (2003) Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxide. Ecosystems 6:444–456

    Article  CAS  Google Scholar 

  • Friedlingstein P, Prentice IC (2010) Carbon-climate feedbacks: a review of model and observation based estimates. Curr Opin Environ Sustain 2:251–257

    Article  Google Scholar 

  • Hartwig UA, Sadowsky MJ (2006) Biological nitrogen fixation: a key process for the response of grassland ecosystems to elevated atmospheric [CO2]. In: Nösberger J et al (eds) Managed ecosystems and CO2 case studies, processes, and perspectives, vol 187., Ecological StudiesSpringer, Berlin, pp 325–336

    Chapter  Google Scholar 

  • Hendrey GR, Miglietta F (2006) FACE technology: past, present, and future. In: Nösberger J et al (eds) Managed ecosystems and CO2 case studies, processes, and perspectives, vol 187., Ecological studiesSpringer, Berlin, pp 5–43

    Google Scholar 

  • Hofmockel KS, Schlesinger WH, Jackson RB (2007) Effects of elevated atmospheric CO2 on amino acid and NH4 +–N cycling in a temperate pine ecosystem. Glob Change Biol 13:1950–1959

    Article  Google Scholar 

  • Holmes WE, Zak DR, Pregitzer KS, King JS (2003) Soil nitrogen transormations under Populus tremuloides, Betual papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Glob Change Biol 9:1743–1750

    Article  Google Scholar 

  • Holmes WE, Zak DR, Pregitzer KS, King JS (2006) Elevated CO2 and O3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems 9:1354–1363

    Article  CAS  Google Scholar 

  • Hu SJ, Tu C, Chen X, Gruver JB (2006) Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant Soil 289:47–58

    Article  CAS  Google Scholar 

  • Hungate BA, Chapin FS III, Zhong H, Holland EA, Field CB (1997a) Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–153

    Article  Google Scholar 

  • Hungate BA, Lund CP, Pearson HL, Chapin FS III (1997b) Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89–109

    Article  CAS  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob Change Biol 5:781–789

    Article  Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  CAS  PubMed  Google Scholar 

  • Hungate BA et al (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291

    Article  CAS  PubMed  Google Scholar 

  • Hungate BA et al (2009) Assessing the effect of elevated CO2 on soil C: a comparison of four meta-analyses. Glob Change Biol 15:2020–2034

    Article  Google Scholar 

  • Iversen CM, Hooker TD, Classen AT, Norby RJ (2011) Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Glob Change Biol 17:1130–1139

    Article  Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Change Biol 13:452–465

    Article  Google Scholar 

  • Jin VL, Evans RD (2010) Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia 163:257–266. doi:10.1007/s00442-010-1562-z

    Article  PubMed  Google Scholar 

  • Larsen KS et al (2011) Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Change Biol 17:1884–1899

    Article  Google Scholar 

  • Le Quéré C et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Schulze ED, Heimann M, Harrison SP, Holland EA, Lloyd J, Prentice IC, Schimel DS (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 95–114

    Chapter  Google Scholar 

  • Luo Y et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulation of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    Article  PubMed  Google Scholar 

  • McCarthy HR et al (2010) Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–528. doi:10.1111/j.1469-8137.2009.03078.x

    Article  CAS  PubMed  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    Article  CAS  Google Scholar 

  • McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP (2009) Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Glob Change Biol 15:2035–2048

    Article  Google Scholar 

  • Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability of the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445

    Article  Google Scholar 

  • Müller C et al (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem 41:1996–2001

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48. doi:10.1111/j.1469-8137.2008.02751.x

    Article  PubMed  Google Scholar 

  • Newton PCD, Lieffering M, Bowatte WMSD, Brock SC, Hunt CL, Theobald PW, Ross DJ (2010) The rate of progression and stability of progressive nitrogen limitation at elevated atmospheric CO2 in a grazed grassland over 11 years of Free Air CO2 enrichment. Plant Soil 336:433–441

    Article  CAS  Google Scholar 

  • Niboyet A et al (2011) Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2:art56. doi:10.1890/ES1810-00148.00141

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    Article  PubMed  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Reich PB (2009) BioCON: biodiversity, elevated CO2, and N enrichment-experiment 141. http://www.cedarcreek.umn.edu/research/data/index.php

  • Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass nature. Clim Change 3:278–282

    Article  CAS  Google Scholar 

  • Reich PB et al (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Hartwig UA, Frossard E, Nösberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335

    Article  CAS  Google Scholar 

  • Rütting T, Clough TJ, Müller C, Lieffering M, Newton PCD (2010) Ten years of elevated atmospheric CO2 alters soil N transformations in a sheep-grazed pasture. Glob Change Biol 16:2530–2542

    Google Scholar 

  • Rütting T, Huygens D, Staelens J, Müller C, Boeckx P (2011) Advances in 15N tracing experiments: new labelling and data analysis approaches. Biochem Soc Trans 39:279–283

    Article  PubMed  Google Scholar 

  • Schimel J (1996) Assumptions and errors in the 15NH4 + pool dilution technique for measuring mineralization and immobilization. Soil Biol Biochem 28:827–828

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schneider MK et al (2004) Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Glob Change Biol 10:1377–1388

    Article  Google Scholar 

  • Sinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ (2003) Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl Soil Ecol 24:263–271

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (2012) Biometry. W. H. Freeman and Company, New York

    Google Scholar 

  • Talhelm AF et al (2014) Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests. Glob Change Biol 20:2492–2504

    Article  Google Scholar 

  • Tietema A, Wessel WW (1992) Gross nitrogen transformations in the organic layer of acid forest ecosystems subjected to increased atmospheric nitrogen input. Soil Biol Biochem 24:943–950

    Article  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509

    Article  PubMed  Google Scholar 

  • Wanek W, Mooshammer M, Blöchl A, Hanreich A, Richter A (2010) Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biol Biochem 42:1293–1302

    Article  CAS  Google Scholar 

  • Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi:10.21029/22009GL041009

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Watanabe T, Bowatte S, Newton PCD (2013) A reduced fraction of plant N derived from atmospheric N (%Ndfa) and reduced rhizobial nifH gene numbers indicate a lower capacity for nitrogen fixation in nodules of white clover exposed to long-term CO2 enrichment. Biogeosciences 10:8269–8281

    Article  Google Scholar 

  • West JB, Hobbie SE, Reich PB (2006) Effects of plant species diversity, atmospheric [CO2], and N addition on gross rates of inorganic N release from soil organic matter. Glob Change Biol 12:1400–1408

    Article  Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2001) Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci Soc Am J 65:340–346

    Article  CAS  Google Scholar 

  • Zaehle S, Dalmonech D (2011) Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 3:311–320

    Article  Google Scholar 

  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger ME (2003) Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecol Appl 13:1508–1514

    Article  Google Scholar 

Download references

Acknowledgments

Prof. L. Klemedtsson for valuable discussion; financially support by the strategic research area BECC (Biodiversity and Ecosystem services in a Changing Climate, www.becc.lu.se) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Rütting.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rütting, T., Andresen, L.C. Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status. Nutr Cycl Agroecosyst 101, 285–294 (2015). https://doi.org/10.1007/s10705-015-9683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9683-8

Keywords

Navigation