Skip to main content
Log in

A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Chickpea (Cicer arietinum L.) is an important crop worldwide. Fungi of the genus Fusarium are among the most aggressive pathogens of chickpea, causing plant wilt and/or root rot. The incidence of soilborne pathogens can be reduced by increasing the microbial diversity in the rhizosphere. To improve soil suppressiveness against Fusarium spp., we optimized a microbial consortium consisting in a mixture of bacterial isolates selected from the naturally occurring microflora in the chickpea rhizosphere.

Methods

Beneficial rhizobacteria were selected based on i) their mutual compatibility when grown in mixture, ii) antagonistic activity against F. oxysporum f. sp. ciceris race 0 and F. solani f. sp. pisi and iii) growth promoting capacity on chickpea.

Results

The best results were obtained by using a consortium consisting of a mixture of four bacterial isolates: Serratia marcescens isolate 59, Pseudomonas fluorescens isolate 57, Rahnella aquatilis isolate 36 and Bacillus amyloliquefaciens isolate 63.

Conclusions

This microbial consortium efficiently controlled both Fusarium pathogens, with a consistently higher efficacy compared to those of bacteria applied individually. The putative mechanisms involved in the interaction between antagonists, plant and Fusarium are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aureoginosa PNA1. Can J Microbiol 49:85–91

    Article  CAS  PubMed  Google Scholar 

  • Aris TW, Rika IA, Giyanto RI (2011) Screening of Pseudomonas sp. isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci 6:134–141

    Article  Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin a is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395

    Article  CAS  PubMed  Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. Sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • De Curtis F, Palmieri D, Vitullo D, Lima G (2014) First report of Fusarium oxysporum f.sp. pisi as causal agent of root and crown rot on chickpea (Cicer arietinum) in southern Italy. Plant Dis 98:995

    Article  Google Scholar 

  • Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118–127

    Article  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations Statistical Database (FAOSTAT) (2010) FAOSTAT production statistics of crops http://faostat.fao.org/site/567/default.aspx#ancor

  • Garbeva P, van Veen JA, van Elsas JD (2004) Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for Indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hervás A, Landa B, Jiménez-Díaz RM (1997) Influence of chickpea genotype and Bacillus sp. on protection from fusarium wilt by seed treatment with nonpathogenic Fusarium oxysporum. Eur J Plant Pathol 103:631–642

    Article  Google Scholar 

  • Hervás A, Landa B, Datnoff LE, Jiménez-Díaz RM (1998) Effects of commercial and indigenous microorganisms on fusarium wilt development in chickpea. Biol Control 13:166–176

    Article  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    Article  CAS  PubMed  Google Scholar 

  • Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of bacillus strains (IN937a and IN937b) against different pathogens. Biol Control 42:178–185

    Article  Google Scholar 

  • Jiménez-Díaz RM, Basallote Ureba MJ, Rapoport H (1989) Colonization and pathogenesis in chickpea infected by races of Fusarium oxysporum f. sp. ciceri. Vascular Wilt Diseases of Plants. Tjamos EC & Tjamos CH (ed) NATO ASI Series (pp 113–121), Springer-Verlag, Berlin

  • Jiménez-Fernández D, Navas-Cortés JA, Montes-Borrego M, Jiménez-Díaz RM, Landa BB (2011) Molecular and pathogenic characterization of Fusarium redolens, a new causal agent of fusarium yellows in chickpea. Plant Dis 95:860–870

    Article  Google Scholar 

  • Jimenez-Gasco MM, Jimenez-Diaz RM (2003) Development a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f sp. ciceris and its pathogenic races 0, 1 A, 5, and 6. Phytopathology 93:200–209

    Article  CAS  Google Scholar 

  • Karimi K, Amini J, Harighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against fusarium wilt of chickpea. Aust J Crop Sci 6:695–703

    Google Scholar 

  • Khairnar NP, Misra HS, Apte SK (2003) Pyrroloquinoline–quinone synthesized in Escherichia coli by pyrroloquinoline–quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun 312:303–308

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM (2004) Integrated management of fusarium wilt of chickpea with sowing date, host resistance, and biological control. Phytopathology 94:946–960

    Article  PubMed  Google Scholar 

  • Lichtenzveig J, Bonfil DJ, Zhang HB, Shtienberg D, Abbo S (2006) Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor Appl Genet 113:1357–1369

    Article  PubMed  Google Scholar 

  • Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    Article  CAS  PubMed  Google Scholar 

  • McFadden W, Hall R, Phillips LG (1989) Relation of initial inoculum density to severity of fusarium root rot of white bean in commercial fields. Can J Plant Pathol 11:122–126

    Article  Google Scholar 

  • McKinney HH (1923) Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J Agric Res 26:195–217

    Google Scholar 

  • Navas-Cortés JA, Hau B, Jiménez-Díaz RM (1998) Effect of sowing date, host cultivar, and race of Fusarium oxysporum f. sp. ciceris on development of fusarium wilt of chickpea. Phytopathology 88:1338–1346

    Article  PubMed  Google Scholar 

  • Radjacommare R, Venkatesan S, Samiyappan R (2010) Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch Phytopathol Plant Protect 43:1–17

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1659 pages).

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Singh PK, Singh M, Vyas D (2010) Biocontrol of fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosorum Biovar. Caryologia 63:349–353

    Article  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2010) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayaragahavan K, Raman S (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  Google Scholar 

  • Vitullo D, Di Pietro A, Romano A, Lanzotti V, Lima G (2012) Interaction between Bacillus amyloliquefaciens and genetically characterized mutants of Fusarium oxysporum provides new insights into the antifungal mechanism of bacterial lipopeptides. Plant Pathol 61:689–699

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lima.

Additional information

Responsible Editor: Birgit Mitter.

Palmieri D. and Vitullo D. contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmieri, D., Vitullo, D., De Curtis, F. et al. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil 412, 425–439 (2017). https://doi.org/10.1007/s11104-016-3080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3080-1

Keywords

Navigation