Skip to main content

Advertisement

Log in

Tree species and soil nutrients drive tropical reforestation more than associations with mycorrhizal fungi

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The relative benefits that mycorrhizal fungi confer to host plants and reforestation efforts may differ due to the host tree species and soil nutrient status. Our research objective was to examine the effects of mycorrhizal fungi, host tree species, and soil nutrient availability on nutrient acquisition in tropical reforestation.

Methods

Four tree species (Pinus caribaea, Quercus insignis, Swietenia macrophylla, and Terminalia amazonia) were planted across eight sites and subjected to five nutrient treatments in southern Costa Rica.

Results

After two years, there were strong growth differences based upon tree species but not mycorrhizal fungi. Site variation, specifically base cation availability, and nutrient treatments also influenced tree growth and tissue nutrient concentrations. In a complementary greenhouse experiment isolating fungal from tree species effects, the ratio of nutrients in treatments was more important to tree growth responses to fungal symbionts than individual nutrients.

Conclusions

These results show that soil nutrient availability may be more important to tree species’ nutrient acquisition than mycorrhizal fungi. This study highlights the importance of tree species selection and replication across sites with different soil nutrient ratios in order to make management recommendations for reforestation success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566

    Article  PubMed  Google Scholar 

  • Alexander IJ, Hogberg P (1986) Ectomycorrhizas of tropical angiospermous trees. New Phytol 102:541–549

    Article  Google Scholar 

  • Alexander I, Selosse MA (2009) Mycorrhizas in tropical forests: a neglected research imperative. New Phytol 182:14–16

    Article  PubMed  Google Scholar 

  • Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gomez-Pompa A (2003) Impacts of Early- and Late-Seral Mycorrhizae during Restoration in Seasonal Tropical Forest, Mexico. Ecol Appl 13:1701–1717

    Article  Google Scholar 

  • Allsop N, Stock D (1995) Relationship between seed reserves, seedling growth and mycorrhizal responses in 14 related shrubs (Rosidae) from a low nutrient environment. Funct Ecol 9:248–254

    Article  Google Scholar 

  • Ashton PMS, Gamage S, Gunatilleke IAUN, Gunatilleke CVS (1997) Restoration of a Sri Lankan rainforest: using Caribbean pine Pinus caribaea as a nurse for establishing late-successional tree species. J Appl Ecol 34:915–925

    Article  Google Scholar 

  • Austin PC, Hux JE (2002) A brief note on overlapping confidence intervals. J Vasc Surg 36:194–195

    Article  PubMed  Google Scholar 

  • Baligar VC, Bennett O (1986) NPK-fertilizer efficiency – a situation analysis for the tropics. Fert Res 10:147–164

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523

    Article  CAS  PubMed  Google Scholar 

  • Besford RT (1979) Quantitative aspects of leaf acid phosphatase activity and the phosphorus status of tomato plants. Ann Bot 44:153–161

    CAS  Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. P Roy Soc Lond B 269:2595–2601

    Article  Google Scholar 

  • Bloomfield HE, Handley JF, Bradshaw AD (1982) Nutrient deficiencies and the aftercare of reclaimed derelict land. J Appl Ecol 19(15):1–8

    Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw A (2004) The role of nutrients and the importance of function in the assembly of ecosystems. In: Templeton VM, Hobbs R, Nuttle TH, Halle S (eds) Assembly rules and restoration ecology: bridging the gap between theory and practice. Island Press, Washington, D.C., pp. 325–340

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with Mycorrhizas in Forestry and Agriculture, vol 32. ACIAR, Pirie, Canberra, Monograph

    Google Scholar 

  • Burgess TI, Malajczuk N, Groves TS (1993) The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. and E. diversicolor. Plant Soil 153:155–164

    Article  CAS  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135

    Article  Google Scholar 

  • Calvo-Alvarado JC, Arias D, Richter DD (2007) Early growth performance of native and introduced fast growing tree species in wet to sub-humid climates of the Southern region of Costa Rica. Forest Ecol Manag 242:227–235

    Article  Google Scholar 

  • Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole RJ, Holl KD (2011) Litterfall Dynamics under Different Tropical Forest Restoration Strategies in Costa Rica. Biotropica 43:279–287

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  CAS  PubMed  Google Scholar 

  • Chhetri DBK, Fowler GW (1996) Estimating diameter at breast height and basal diameter of trees from stump measurements in Nepal’s lower temperate broad-leaved forests. Forest Ecol Manag 81:75–84

    Article  Google Scholar 

  • Clarholm M, Rosengren-Brinck U (1995) Phosphorus and nitrogen fertilization of a Norway spruce forest: effects on needle concentrations and acid phosphatase activity in the humus layer. Plant Soil 175:239–249

    Article  CAS  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–496

    Article  CAS  Google Scholar 

  • Development Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org

    Google Scholar 

  • Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS (2014) Mycorrhizas in changing ecosystems. Botany 92:149–160

    Article  CAS  Google Scholar 

  • Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA (2004) Seed reserves and light intensity affect the growth and mycorrhizal development of the seedlings of an Australian rain forest tree. J Trop Ecol 20:345–349

    Article  Google Scholar 

  • Gehring CA, Whitham TG (1991) Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature 353:556–557

    Article  Google Scholar 

  • Godbold D, Feig R, Cremer-Herms A, Huttermann A (1993) Determination of stress bioindicators in three Norway spruce stands in northern Germany. Water Air Soil Pollut 66:231–237

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Grman E, Robinson TMP (2013) Resource availability and imbalance affect plant–mycorrhizal interactions: a field test of three hypotheses. Ecology 94:62–71

    Article  PubMed  Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Article  Google Scholar 

  • Hodge A, Alexander IJ, Gooday GW (1995) Chitinoytic activities of Eucalyptus piluaris and Pinus sylvestris root systems challenged with mycorrhizal and pathogenic fungi. New Phytol 131:255–261

    Article  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Hogan CM (2014) Talamancan montane forests. World Wildlife Fund. Retrieved from http://www.eoearth.org/view/article/156401/. Accessed 20 November 2015

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose, Costa Rica

    Google Scholar 

  • Holl KD, Zahawi RA, Cole RJ, Ostertag R, Cordell S (2011) Planting Seedlings in Tree Islands versus Plantations as a Large-Scale Tropical Forest Restoration Strategy. Restor Ecol 19:470–479

    Article  Google Scholar 

  • Holste EK, Kobe RK, Vriesendorp CF (2011) Seedling growth responses to soil resources in the understory of a wet tropical forest. Ecology 92:1828–1838

    Article  PubMed  Google Scholar 

  • Ianson DC, Allen MF (1986) The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia 78:164–168

    Article  Google Scholar 

  • ITCR (2004) Atlas Digital de Costa Rica. Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

    Google Scholar 

  • Janos JP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rainforest plant growth. Ecology 61:151–162

    Article  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Tansley review: resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Kardol P, Wardle DA (2010) How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol Evol 25:670–679

    Article  PubMed  Google Scholar 

  • Karst J, Marczak L, Jones MD, Turkington R (2008) The mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042

    Article  PubMed  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kobe RK, Iyer M, Walters MB (2010) Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91:166–179

    Article  PubMed  Google Scholar 

  • Kolari KK, Sarjala T (1995) Acid phosphatase activity and phosphorus nutrition in Scots pine needles. Tree Physiol 15:747–752

    Article  CAS  PubMed  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JD (2005) Restoration of Degraded Tropical Forest Landscapes. Science 310:1628–1632

    Article  CAS  PubMed  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). P Natl Acad Sci USA 77:2113–2118

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A New Method which Gives an Objective Measure of Colonization of Roots by Vesicular-Arbuscular Mycorrhizal Fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McGuire KL, Henkel TW, de la Cerda IG, Villa G, Edmund F, Andrew C (2008) Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species. Mycorrhiza 18:217–222

    Article  CAS  PubMed  Google Scholar 

  • Mehlich A (1984) Mehlich-3 soil test extractant – a modification of mehlich-2 extractant. Commun Soil Sci Plan 15:1409–1416

    Article  CAS  Google Scholar 

  • Meinhardt KA, Gehring CA (2012) Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecol Appl 22:532–549

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    Article  PubMed  Google Scholar 

  • Phillips RP, Midgley MG, Brozstek E (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Picone C (2000) Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750

    Article  Google Scholar 

  • Piotto D, Montagnini F, Ugalde L, Kanninen M (2003) Performance of forest plantations in small and medium-sized farms in the Atlantic lowlands of Costa Rica. Forest Ecol Manag 175:195–204

    Article  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Porder S, Vitousek P, Chadwick O, Chamberlain C, Hilley G (2007) Uplift, erosion and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:158–170

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems - Nature’s response to the “Law of the minimum.” In Hawksworth DL. (ed) Frontiers in mycology. CAB International, Wallingford, UK. pp. 101–130

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 57:475–492

    Article  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167: 869-880

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

  • Robertson GP, Tiedje JM (1988) Deforestation alters denitrification in a lowland tropical rain forest. Nature 336:756–759

    Article  CAS  Google Scholar 

  • Ross SM (1993) Organic matter in tropical soils: current conditions, concerns and prospects for conservation. Prog Phys Geogr 17:265–305

    Article  Google Scholar 

  • Sahani U, Behera N (2001) Impact of deforestation on soil physicochemical characteristics, microbial biomass and microbial activity of tropical soil. Land Degrad Dev 12:93–105

    Article  Google Scholar 

  • Schenck NC, Pérez Y (1990) Manual for the Identification of VA Mycorrhizal Fungi, 3rd edn. Synergistic Publications, Gainesville, FL

    Google Scholar 

  • Singmann H, Bolker B, Westfall J, Aust F (2016) Afex: Analysis of Factorial Experiments. R package version 0:16–11 https://CRAN.R-project.org/package=afex

    Google Scholar 

  • Siqueira JO, Carneiro MAC, Curi N, da Silva Rosado SC, Davide AC (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in southeastern Brazil. Forest Ecol Manag 107:241–252

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • St. Clair SB, Lynch JP (2005) Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New Phytol 165:581–590

    Article  CAS  PubMed  Google Scholar 

  • Stevens PA, Harrison AF, Jones HE, Williams TG, Hughes S (1993) Nitrate leaching from a Sitka spruce plantation and the effect of fertilization with phosphorus and potassium. Forest Ecol Manag 58:233–247

    Article  Google Scholar 

  • Tanner EVJ, Kapos V, Freskos S, Healy JR, Theobald AM (1990) Nitrogen and phosphorus fertilization of Jamaican montane forest tress. J Trop Ecol 6:231–238

    Article  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Verbruggen E, Jansa J, Hammer EC, Rillig MC (2016) Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J Ecol 104:261–269

    Article  CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar: a simple staining Technique for Arbuscular-Mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeno N, Ibarra D, Condit R, Ashton PMS (2007) Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. Forest Ecol Manag 243:39–49

    Article  Google Scholar 

  • Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EWJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

  • Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011) Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecol 36:433–445

    Article  Google Scholar 

  • Yin H, Wheeler E, Phillips RP (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221

    Article  CAS  Google Scholar 

  • Zahawi RA, Duran G, Kormann U (2015) Sixty-seven years of land-use change in southern Costa Rica. PLoS One 10:e0143554

    Article  PubMed  PubMed Central  Google Scholar 

  • Zangaro W, Bononi VLR, Trufen SB (2000) Mycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol 16:603–622

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Chhin, D.E. Rothstein, P. Nzokou, B. Graff and the MSU Agronomy farm for the use of equipment; M. Cook, C.A. Gehring, S.M. Neumann, and P. Nguygen for technical advice; C. Murillo for field help; G. Bayerl, T. Harris, and N. Vannest for laboratory assistance; and OTS and Las Cruces Biological Station staff for support. E.K. Holste was supported by National Science Foundation Graduate Research, Michigan State University Plant Sciences, and the Carol C. Gustafson and Gary S. Murphy Endowed Fellowships while contributing to this research. Funding was provided by the P.E.O. Scholar Award, Rasmussen Fellowship Award, and Organization of Tropical Studies Research Grant. The manuscript benefited from critiques by T.M.P. Robinson, C. Esch, D. Minor, K. Wood, L.O. Brudvig, C.A. Gerhring, G.P. Robertson, M.B. Walters, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen K. Holste.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Peter Christie.

Electronic supplementary material

Table S1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holste, E.K., Kobe, R.K. Tree species and soil nutrients drive tropical reforestation more than associations with mycorrhizal fungi. Plant Soil 410, 283–297 (2017). https://doi.org/10.1007/s11104-016-3013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3013-z

Keywords

Navigation