Skip to main content
Log in

Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

During the fallow period, non-legume cover crop species can capture mineral nitrogen (N) and thus decrease nitrate leaching, whereas legume cover crop species can provide a green manuring service that increases N availability for the subsequent crop. The aim of our study was to investigate the ability of bispecific mixtures to simultaneously produce these two services of N management in relation to their interspecific interactions.

Methods

Three field experiments were conducted at contrasting sites from summer to autumn to evaluate 25 mixtures and 10 sole crops. We measured biomass, N acquisition, C:N ratio and soil mineral N. Ecosystem services were assessed using both experimental data and simulation model predictions.

Results

Overall, prediction of N mineralized from cover crop residues was significantly higher for mixtures than for non-legume sole crops. Predictions of nitrate leached after mixtures did not differ significantly from those after non-legume sole crops and remained significantly lower than those under bare soil, especially for mixtures with turnip rape which benefitted greatly from being in mixtures.

Conclusions

Some of the mixtures provided a choice of compromises between the two ecosystem services, which helps define solutions for adapting mixture choice according to the site’s soil and climate characteristics and to fallow period management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amarger N, Mariotti A, Mariotti F, et al. (1979) Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15 N natural abundance. Plant Soil 52:269–280

    Article  CAS  Google Scholar 

  • Bedoussac L, Justes E (2011) A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: application to durum wheat–winter pea intercrops. F Crop Res 124:25–36. doi:10.1016/j.fcr.2011.05.025

    Article  Google Scholar 

  • Bedoussac L, Justes E (2010a) The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 330:19–35. doi:10.1007/s11104-009-0082-2

    Article  CAS  Google Scholar 

  • Bedoussac L, Justes E (2010b) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant Soil 330:37–54. doi:10.1007/s11104-010-0303-8

    Article  CAS  Google Scholar 

  • Brisson N, Brussière F, Ozier-Lafontaine H, et al. (2004) Original article adaptation of the crop model STICS to intercropping. Theoretical Basis and Parameterisation Agronomie 24:409–421. doi:10.1051/agro

    Google Scholar 

  • Brisson N, Gary C, Justes E, et al. (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterisation of the STICS crop model, Editions Q

  • Brisson N, Mary B, Ripoche D, et al. (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I Theory and Parameterization applied to Wheat and Corn Agronomie 18:311–346. doi:10.1051/agro:19980501

    Google Scholar 

  • Brisson N, Ruget F, Gate P, et al. (2002) STICS: a generic model for simulating crops and their water and nitrogen balances. II Model Validation for Wheat and Maize Agronomie 22:69–92. doi:10.1051/agro:2001005

    Google Scholar 

  • Constantin J, Beaudoin N, Launay M, et al. (2012) Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate. Agric Ecosyst Environ 147:36–46. doi:10.1016/j.agee.2011.06.006

    Article  CAS  Google Scholar 

  • Constantin J, Beaudoin N, Laurent F, et al. (2011) Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant Soil 341:137–154. doi:10.1007/s11104-010-0630-9

    Article  CAS  Google Scholar 

  • Constantin J, Le Bas C, Justes E (2015) Large-scale assessment of optimal emergence and destruction dates for cover crops to reduce nitrate leaching in temperate conditions using the STICS soil–crop model. Eur J Agron 69:75–87. doi:10.1016/j.eja.2015.06.002

    Article  Google Scholar 

  • Coucheney E, Buis S, Launay M, et al. (2015) Accuracy, robustness and behavior of the STICS v-8 soil-crop model for plant, water and nitrogen outputs: evaluation over a wide range of agro-environmental conditions. Environ Model Softw 64:177–190. doi:10.1016/j.envsoft.2014.11.024

    Article  Google Scholar 

  • Dorsainvil F (2002) Evaluation par modélisation de l’impact environnemental des modes de conduite des cultures intermédiaires sur les bilans d’eau et d’azote dans les systèmes de culture. These INA PG, Paris

    Google Scholar 

  • Gebhard C (2012) Screening de légumineuses pour couverts végétaux développement des biomasses et fixation azotée. Haute école des sciences agronomiques, forestières et alimentaires, Zollikofen

  • Guillaume S, Bergez J-EE, Wallach D, Justes E (2011) Methodological comparison of calibration procedures for durum wheat parameters in the STICS model. Eur J Agron 35:115–126. doi:10.1016/j.eja.2011.05.003

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Interspecific competition, N use and interference with weeds in pea - barley intercropping. F Crop Res 70:101–109

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosystems 65:289–300

    Article  CAS  Google Scholar 

  • Jamont M, Piva G, Fustec J (2013) Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter? Plant Soil 371:641–653. doi:10.1007/s11104-013-1712-2

    Article  CAS  Google Scholar 

  • Jensen ES (1996a) Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol Biochem 28:159–168. doi:10.1016/0038-0717(95)00134-4

    Article  CAS  Google Scholar 

  • Jensen ES (1996b) Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182:25–38

    Article  CAS  Google Scholar 

  • Justes E, Beaudoin N, Bertuzzi P, et al (2012) The use of cover crops to reduce nitrate leaching: Effect on the water and nitrogen balance and other ecosystem services. Int. Fertil. Soc. Meet. Cambridge, pp 4–43

  • Justes E, Mary B, Nicolardot B (2009) Quantifying and modelling C and N mineralization kinetics of catch crop residues in soil: parameterization of the residue decomposition module of STICS model for mature and non mature residues. Plant Soil 325:171–185. doi:10.1007/s11104-009-9966-4

    Article  CAS  Google Scholar 

  • Kramberger B, Gselman A, Podvršnik M, et al. (2013) Environmental advantages of binary mixtures of trifolium incarnatum and lolium multiflorum over individual pure stands. Plant Soil Environ 59:22–28

    Google Scholar 

  • Kristensen HL, Thorup-Kristensen K (2000) Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci Soc Am J 68:529–537

    Article  Google Scholar 

  • Kumar K, Goh KM (2002) Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur J Agron 16:295–308. doi:10.1016/S1161-0301(01)00133-2

    Article  CAS  Google Scholar 

  • Kuo S, Sainju UM (1998) Nitrogen mineralization and availability of mixed leguminous and non-leguminous cover crop residues in soil. Biol Fertil Soils 26:346–353

    Article  CAS  Google Scholar 

  • Li L, Sun J, Zhang F, et al. (2006) Root distribution and interactions between intercropped species. Oecologia 147:280–290. doi:10.1007/s00442-005-0256-4

    Article  PubMed  Google Scholar 

  • Meisinger JJJ, Hargrove WL, Mikkelsen RL, et al (1991) Effects of cover crops on groundwater quality. In: Hargrove eds. WL (ed) Cover Crop. clean water. Soil and Water Conservation Society, Ankeny, IA: SWCS, pp 57–68

  • Möller K, Stinner W, Leithold G (2008) Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutr Cycl Agroecosystems 82:233–249. doi:10.1007/s10705-008-9182-2

    Article  Google Scholar 

  • Peoples MB, Boddey R, Herridge DF (2002) Quantification of nitrogen fixation. In: Leigh GJ (ed) Nitrogen fixat. Millenn. Elsevier, Amsterdam, pp. 357–389

    Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for s agricultural production? Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Quemada M, Cabrera ML (1995) Carbon and nitrogen mineralized from leaves and stems of four cover crops. Soil Sci Soc Am J 59:471–477. doi:10.2136/sssaj1995.03615995005900020029x

    Article  CAS  Google Scholar 

  • Ranells NN, Wagger MG (1997) Winter annual grass-legume bicultures for efficient nitrogen management in no-till corn. Agric Ecosyst Environ 65:23–32. doi:10.1016/S0167-8809(97)00054-6

    Article  Google Scholar 

  • Schipanski ME, Drinkwater LE (2012) Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil 357:147–159. doi:10.1007/s11104-012-1137-3

    Article  CAS  Google Scholar 

  • Smith RG, Atwood LW, Warren ND (2014) Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS One 9:e97351. doi:10.1371/journal.pone.0097351

    Article  PubMed  PubMed Central  Google Scholar 

  • Snapp SS, Swintonb SM, Labartab R, et al. (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97:322–332. doi:10.2134/agronj2005.0322

    Google Scholar 

  • Stern WR (1993) Nitrogen fixation and transfer in intercrop systems. F Crop Res 34:335–356. doi:10.1016/0378-4290(93)90121-3

    Article  Google Scholar 

  • Summers CF, Park S, Dunn AR, et al. (2014) Single season effects of mixed-species cover crops on tomato health (cultivar celebrity) in multi-state field trials. Appl Soil Ecol 77:51–58. doi:10.1016/j.apsoil.2014.01.010

    Article  Google Scholar 

  • Szumigalski AR, Van Acker RC (2008) Land equivalent ratios, light interception, and water use in annual intercrops in the presence or absence of in-crop herbicides. Agron J 100:1145–1154. doi:10.2134/agronj2006.0343

    Article  Google Scholar 

  • Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Effects of different green manures on soil biological properties and maize yield. Bioresour Technol 99:1758–1767. doi:10.1016/j.biortech.2007.03.052

    Article  CAS  PubMed  Google Scholar 

  • Thomsen IK, Hansen EM (2014) Cover crop growth and impact on N leaching as affected by pre- and postharvest sowing and time of incorporation. Soil Use Manag 30:48–57. doi:10.1111/sum.12083

    Article  Google Scholar 

  • Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured ? Plant Soil 230:185–195

    Article  CAS  Google Scholar 

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Article  Google Scholar 

  • Tonitto C, David MBB, Drinkwater LEE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72. doi:10.1016/j.agee.2005.07.003

    Article  Google Scholar 

  • Tosti G, Benincasa P, Farneselli M, et al. (2012) Green manuring effect of pure and mixed barley – hairy vetch winter cover crops on maize and processing tomato N nutrition. Eur J Agron 43:136–146. doi:10.1016/j.eja.2012.06.004

    Article  Google Scholar 

  • Tosti G, Benincasa P, Farneselli M, et al. (2014) Barley–hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk. Eur J Agron 54:34–39. doi:10.1016/j.eja.2013.11.012

    Article  Google Scholar 

  • Tosti G, Thorup-Kristensen K (2010) Using coloured roots to study root interaction and competition in intercropped legumes and non-legumes. J Plant Ecol 3:1–9. doi:10.1093/jpe/rtq014

    Article  Google Scholar 

  • Touchton JT, Rickerl DH, Walker RH, Snipes CE (1984) Winter legumes as a nitrogen source for no-tillage cotton. Soil Tillage Res 4:391–401. doi:10.1016/0167-1987(84)90038-2

    Article  Google Scholar 

  • Tribouillois H (2014) Caractérisation fonctionnelle d’espèces utilisées en cultures intermédiaires et analyse de leurs performances en mélanges bi-spécifiques pour produire des services écosystémiques de gestion de l'azote. INP Toulouse

  • Tribouillois H, Florian F, Cruz P, et al. (2015) A functional characterisation of a wide range of cover crop species: growth and nitrogen acquisition rates, leaf traits and ecological strategies. PLoS One 10:e0122156. doi:10.1371/journal.pone.0122156

    Article  PubMed  PubMed Central  Google Scholar 

  • Unkovich M, Herridge D, Peoples M (2008) Measuring plant-associated nitrogen fixation in agricultural systems measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Willey RW (1979) Intercropping - its importance and research need. Part 1. Competition and yield advantages. F Crop Abstr 32:1–10

    Google Scholar 

  • Wortman SE, Francis CA, Bernards ML, et al. (2012a) Optimizing cover crop benefits with diverse mixtures and an alternative termination method. Agron J 104:1425–1435. doi:10.2134/agronj2012.0185

    Article  Google Scholar 

  • Wortman SE, Francis CA, Lindquist JL (2012b) Cover crop mixtures for the western corn belt: opportunities for increased productivity and stability. Agron J 104:699–705. doi:10.2134/agronj2011.0422

    Article  Google Scholar 

  • Xiao Y, Li L, Zhang F (2004) Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15 N techniques. Plant Soil 262:45–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Arvalis–Institut du Végétal, the Midi-Pyrénées Region, the UMR AGIR of INRA and the French National Research Agency (project ANR-09-STRA-06; MicMac-design, Programme STRA 2009). The authors would like to thank M. Labarrère and L. Bossut for their efficient technical help and A. Gavaland, P. Bataillon and D. Campergue at the INRA Auzeville experimental unit for technical assistance. We also thank E. Masson, M. Moquet, V. Bouetel, D. Millet and S. Lair at the Arvalis Bignan research site and Y. Pousset, J. Pauget and A. Authier at the Arvalis Lyon research site. We thank M.L. and M.S. Corson for improving the English in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Tribouillois.

Additional information

Responsible Editor: Martin Weih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tribouillois, H., Cohan, JP. & Justes, E. Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modelling. Plant Soil 401, 347–364 (2016). https://doi.org/10.1007/s11104-015-2734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2734-8

Keywords

Navigation