Skip to main content
Log in

Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Legume-brassica intercrops may help to reduce N fertilizer input. We tested whether (i) intercropping with faba bean can improve N status of rapeseed, and (ii) root complementarity and/or N transfer is involved in such performance.

Methods

Pre-germinated rapeseed and faba bean were grown either together or in monospecific rhizotrons (2 plants per rhizotron). Root growth was recorded. N rhizodeposition of the crops and N transferred between species were assessed using a 15N stem-labelling method.

Results

Intercropped rapeseeds accumulated 20 % higher amounts of N per plant than monocultures. Up to 32 days after sowing, root distribution in the rhizotrons was favourable to physical sharing of the soil N: 64 % of faba bean root length was located in the upper part, as 70 % was in the lower part for rapeseed. At late flowering of the faba bean (52 days after sowing), N rhizodeposition of the two crops were similar and reached 8 to 9 % of the plant N. N transferred from the faba bean to the rapeseed was similar to that transferred from the rapeseed to the faba bean.

Conclusions

Niche complementarity benefits more intercropped rapeseed than net N fluxes between species in the early growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen MK, Hauggaard-Nielsen H, Weiner J, Jensen ES (2007) Competitive dynamics in two- and three-component intercrops. J Appl Ecol 44:545–551

    Article  Google Scholar 

  • Banik P, Sasmal T, Ghosal PK, Bagchi DK (2000) Evaluation of mustard (Brassica campestris var. Toria) and legume intercropping under 1: 1 and 2: 1 row-replacement series systems. J Agron Crop Sci 185:9–14

    Article  Google Scholar 

  • Bedoussac L, Justes E (2010) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant Soil 330:37–54

    Article  CAS  Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Carranca C, de Varennes A, Rolston D (1999) Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the 15N isotope dilution technique. Eur J Agron 10:49–56

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Crozat Y (2005) Assessment of root system dynamics of species grown in mixtures under field conditions using herbicide injection and 15N natural abundance methods: a case study with pea, barley and mustard. Plant Soil 276:177–192

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Brisson N, Launay M, Fustec J, Crozat Y (2007) Effect of root depth penetration on soil N sharing and dry matter in pea-barley intercrops given different soil N supplies. Field Crop Res 103:76–85

    Article  Google Scholar 

  • Cortes-Mora FA, Piva G, Jamont M, Fustec J (2010) Niche separation and nitrogen transfer in Brassica-Legume intercrops. Field Veg Crop Res 47:581–586

    Google Scholar 

  • Dahlin S, Stenberg M (2010) Transfer of N from red clover to perennial ryegrass in mixed stands under different cutting strategies. Eur J Agron 33:149–156

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger P, Howarth RP, Cowling EB, Cosby JB (2003) The Nitrogen Cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68

    Article  CAS  Google Scholar 

  • Gombert J, Le Dily F, Lothier J, Etienne P, Rossato L, Allirand JM, Jullien A, Savin A, Ourry A (2010) Effect of nitrogen fertilization on nitrogen dynamics in oilseed rape using 15N-labeling field experiment. J Plant Nutr Soil Sci 173:875–884

    Article  CAS  Google Scholar 

  • Gylfadóttir T, Helgadóttir A, Høgh-Jensen H (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop Res 113:64–71

    Article  Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (2001) Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol Biochem 33:439–448

    Article  Google Scholar 

  • Janzen HH, Bruinsma Y (1989) Methodology for the quantification of root and rhizosphere nitrogen dynamics by exposure of shoots to 15N-labelled ammonia. Soil Biol Biochem 21:189–196

    Article  CAS  Google Scholar 

  • Jensen ES (1996) Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol Biochem 28:159–168

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MM, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crop Res 115:203–216

    Article  Google Scholar 

  • Khan DF, Peoples MB, Herridge DF (2002) Quantifying belowground nitrogen of legumes—1. Optimising procedures for N-15 shoot-labelling. Plant Soil 245:327–334

    Article  CAS  Google Scholar 

  • Köpke U, Nemecek T (2010) Ecological services of faba bean. Field Crop Res 115:217–233

    Article  Google Scholar 

  • Larue AT, Patterson TG (1981) How much nitrogen do legumes fix? Adv Agron 34:15–38

    Article  CAS  Google Scholar 

  • López-Bellido F, López-Bellido R, Redondo R, López-Bellido L (2010) B value and isotopic fractionation in N2 fixation by chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.). Plant Soil 337:425–434

    Article  Google Scholar 

  • Mahieu S, Fustec J, Faure ML, Corre-Hellou G, Crozat Y (2007) Comparison of two 15N labelling methods for assessing nitrogen rhizodeposition of pea. Plant Soil 295:193–205

    Article  CAS  Google Scholar 

  • Mahieu S, Fustec J, Jensen ES, Crozat Y (2009) Do labelling frequency and 15N root enrichment affect N rhizodeposition assessment in cotton-wick method? Soil Biol Biochem 41:2236–2243

    Article  CAS  Google Scholar 

  • Malagoli P, Lainé P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues. Ann Bot 95:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valentin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62

    Article  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Hess J (2003) Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method. Soil Biol Biochem 35:21–35

    Article  CAS  Google Scholar 

  • McMaster GS, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Article  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Paynel F, Lesuffleur F, Bigot J, Diquelou S, Cliquet JB (2008) A study of 15N transfer between legumes and grasses. Agron Sustain Dev 28:281–290

    Article  CAS  Google Scholar 

  • Pelzer E, Bazot M, Makowski D, Corre-Hellou G, Naudin C, Al Rifaï M, Baranger E, Bedoussac L, Biarnès V, Boucheny P, Carrouée B, Dorvillez D, Foissy D, Gaillard B, Guichard L, Mansard MC, Omon B, Prieur L, Yvergniaux M, Justes E, Jeuffroy MH (2012) Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron 40:39–53

    Article  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, Eriksen J, Soegaard K, Rasmussen J (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Rasmussen J (2011) Why we need to restrict the use of “rhizodeposition” and the Janzen and Bruinsma equation. Soil Biol Biochem 43:2213–2214

    Article  CAS  Google Scholar 

  • Rochester IJ, Peoples MB, Constable GA, Gault RR (1998) Faba beans and other legumes add nitrogen to irritated cotton cropping systems. Aust J Exp Agric 38:253–260

    Article  Google Scholar 

  • Russell CA, Fillery IRP (1996) In situ 15N labelling of lupin below ground biomass. Aust J Agric Res 47:1035–1046

    Article  CAS  Google Scholar 

  • Salon C, Lepetit M, Gamas P, Jeudy C, Moreau S, Moreau D, Voisin AS, Duc G, Bourion V, Munier-Jolain N (2009) Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints. C R Biol 332:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Schröder D, Köpke U (2012) Faba bean (Vicia faba L.) intercropped with oil crops—a strategy to enhance rooting density and to optimize nitrogen use and grain production? Field Crop Res 135:74–81

    Article  Google Scholar 

  • Shearer GB, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Szumigalski AR, Van Acker RC (2006) Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agron J 98:1030–1040

    Article  CAS  Google Scholar 

  • Ta TC, Faris MA (1987) Effects of alfalfa proportions and clipping frequencies on timothy–alfalfa mixtures: II. Nitrogen fixation and transfer. Agron J 79:820–824

    Article  Google Scholar 

  • Waterer JG, Vessey JK, Stobbe EH, Soper RJ (1994) Yield and symbiotic nitrogen fixation in a pea-mustard intercrop as influenced by N fertilizer addition. Soil Biol Biochem 26:447–453

    Article  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Wichern F, Andreeva D, Joergensen RG, Kuzyakov Y (2011) Distribution of applied 14C and 15N in legumes using two different labelling methods J Plant Nutr Soil Sci 174:732–741

    Article  CAS  Google Scholar 

  • Xiao YB, Li L, Zhang FS (2004) Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 262:45–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the LEVA, and especially Vincent Oury, for their skilled technical assistance. We are also grateful to Carolina Scalise (ESALQ, Sao Paulo, Brazil) for help in data collection, and Marie-Paule Bataillé for mass spectrometry measurements (University of Caen-Basse Normandie, France). We are grateful to the anonymous reviewers for their helpful comments. This work was funded by the Region Pays-de-la-Loire in France (INTRANBA Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Fustec.

Additional information

Responsible Editor: Elizabeth M. Baggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamont, M., Piva, G. & Fustec, J. Sharing N resources in the early growth of rapeseed intercropped with faba bean: does N transfer matter?. Plant Soil 371, 641–653 (2013). https://doi.org/10.1007/s11104-013-1712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1712-2

Keywords

Navigation