Skip to main content
Log in

Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Legume cover crops are primarily grown for their contribution to soil N pools, but the effect that this added N has on cover crop root decomposition and N release is poorly understood. Our primary objective was to determine the effect that soil N and root diameter size have on root decomposition and N release.

Methods

We determined coarse (>1-mm diameter) and fine (<1-mm diameter) root distribution for crimson clover (Trifolium incarnatum) and hairy vetch (Vicia villosa Roth) using greenhouse-grown plants, and followed with a 12-week incubation in which coarse and fine roots from both species were incubated under natural and elevated (200 kg ha−1) soil N levels.

Results

Crimson clover and hairy vetch consisted primarily of fine roots (≥79 %), which decomposed and released N faster than coarse roots. Soil N addition had a small positive effect on root decomposition, but an inconsistent effect on root N release. There was a net increase in soil inorganic N for all treatments after 12 weeks.

Conclusion

These results improved our understanding of decomposition and N release from crimson clover and hairy vetch roots, and are valuable to farmers seeking to better manage soil C and N pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 41:379–388. doi:10.1007/s00374-005-0858-3

    Article  CAS  Google Scholar 

  • Bolger TP, Angus JF, Peoples MB (2003) Comparison of nitrogen mineralization patterns from root residues of Trifolium subterraneum and Medicago sativa. Biol Fertil Soils 38:296–300. doi:10.1007/s00374-003-0629-y

    Article  CAS  Google Scholar 

  • Buchanan M, King L (1993) Carbon and phosphorus losses from decomposing crop residues in no-till and conventional till agroecosystems. Agron J 85:631–638

    Article  CAS  Google Scholar 

  • Cassel DK, Nielsen DR (1986) Field capacity and available water capacity. In: Klute A (ed) Methods of soil analysis. Part. 1, 2nd edn. ASA, Madison, pp 901–926

    Google Scholar 

  • Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emssions from intensive agricultural systems: variations between crops and seasons key driving variables, and mean emission factors. J Geophys Res D21:26891–268999

    Article  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462. doi:10.1111/j.1469-185X.1988.tb00725.x

    Article  Google Scholar 

  • Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. J Ecol 97:48–56. doi:10.1111/j.1365-2745.2008.01453.x

    Article  CAS  Google Scholar 

  • Fujimaki R, Takeda H, Wiwatiwitaya D (2008) Fine root decomposition in tropical dry evergreen and dry deciduous forests in Thailand. J For Res 13:338–346. doi:10.1007/s10310-008-0087-3

    Article  Google Scholar 

  • Gardner M, Sarrantonio M (2012) Cover crop root composition and density in a long-term vegetable cropping system trial. J Sustain Agric 36:719–737. doi:10.1080/10440046.2012.672548

    Article  Google Scholar 

  • Green CJ, Blackmer AM, Horton R (1995) Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Sci Soc Am J 59:453–459

    Article  CAS  Google Scholar 

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G, Giller KE (eds) Driven by nature, plant litter quality, and decomposition. UK University Press, Cambridge, pp 3–32

    Google Scholar 

  • Herman W, McGill W, Dormaar J (1977) Effects of initial chemical composition on decomposition of roots of 3 grass species. Can J Soil Sci 57:205–215

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • Howard A, Heitman JL, Bowman D (2010) A simple approach for demonstrating soil water retention and field capacity. J Nat Resour Life Sci Educ 39:120–124. doi:10.4195/jnrlse.2009.0036n

    Article  Google Scholar 

  • Jaramillo RE, Nord EA, Chimungu JG, Brown KM, Lynch JP (2013) Root cortical burden influences drought tolerance in maize. Ann Bot 112:429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kochsiek AE, Knops JMH (2013) Effects of nitrogen availability on the fate of litter-carbon and soil organic matter deposition. Br J Environ Clim Chang 3(1):24–43

    Article  CAS  Google Scholar 

  • Kong AYY, Six J (2010) Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J 74:1201–1210. doi:10.2136/sssaj2009.0346

    Article  CAS  Google Scholar 

  • Lawson A, Fortuna AM, Cogger C, Bary A, Stubbs T (2012) Nitrogen contribution of rye-hairy vetch cover crop mixtures to organically-grown sweet corn. Renew Agric Food Syst 28(1):59–69. doi:10.1017/S1742170512000014

    Article  Google Scholar 

  • Lindsey LE, Stienke K, Warncke DD, Everman WJ (2013) Nitrogen release from weed residue. Weed Sci 61(2):334–340. doi:10.1614/WS-D-12-00090.1

    Article  CAS  Google Scholar 

  • Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82. doi:10.1007/BF00011294

    Article  CAS  Google Scholar 

  • Moran KK, Six J, Horwath WR, van Kessel C (2005) Role of mineral-nitrogen in residue decomposition and stable organic matter formation. Soil Sci Soc Am J 69(6):1730–1736

    Article  CAS  Google Scholar 

  • Parr M, Grossman JM, Reberg-Horton SC, Brinton C, Crozier C (2011) Nitrogen delivery from legume cover crops in no-till organic corn production. Agron J 103:1578–1590

    Article  Google Scholar 

  • Parr M, Grossman JM, Reberg-Horton SC, Brinton C, Crozier C (2014) Roller-crimper termination for legume cover crops in North Carolina: impacts on nutrient availability to a succeeding corn crop. Commun Soil Sci Plant Anal 45:1106–1119. doi:10.1080/00103624.2013.867061

    Article  CAS  Google Scholar 

  • Puget P, Drinkwater L (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure. Soil Sci Soc Am J 65:771–779

    Article  CAS  Google Scholar 

  • Rasmussen J, Eriksen J, Jensen ES, Hogh-Jensen H (2010) Root size fractions of ryegrass and clover contribute differently to C and N inclusion in SOM. Biol Fertil Soils 46:293–297. doi:10.1007/s00374-009-0430-7

    Article  CAS  Google Scholar 

  • Rasse DP, Smucker AJM, Schabenberger O (1999) Modifications of soil nitrogen pools in response to alfalfa root systems and shoot mulch. Agron J 91:471–477

    Article  Google Scholar 

  • Recous S, Robin D, Darwis D, Mary B (1995) Soil inorganic N availability: effect on maize residue decomposition. Soil Biol Biochem 27:1529–1538. doi:10.1016/0038-0717(95)00096-W

    Article  CAS  Google Scholar 

  • Regent Instruments Inc. (2012) WinRhizo 2012b. Québec, Canad.

  • Sainju UM, Whitehead WF, Singh BP (2005) Biculture legume–cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron J 97:1403–1412. doi:10.2134/agronj2004.0274

    Article  CAS  Google Scholar 

  • Silver W, Miya R (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  Google Scholar 

  • Stute JK, Posner JL (1995) Synchrony between legume nitrogen release and corn demand in the upper Midwest. Agron J 87:1063–1069

    Article  Google Scholar 

  • Trinsoutrot I, Recous S, Bentz B, Linères M, Chèneby D, Nicolardot B (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci Soc Am J 64:918–926

    Article  CAS  Google Scholar 

  • Utomo M, Frye WW, Blevins RL (1990) Sustaining soil nitrogen for corn using hairy vetch cover crop. Agron J 82:979–983. doi:10.2134/agronj1990.00021962008200050028x

    Article  CAS  Google Scholar 

  • van der Krift TAJ, Kuikman PJ, Möller F, Berendse F (2001) Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant Soil 228:191–200

    Article  Google Scholar 

  • van Groenigen K, Gorissen A, Six J (2005) Decomposition of C-14-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506. doi:10.1016/j.soilbio.2004.08.013

    Article  Google Scholar 

  • Varco JJ, Frye WW, Smith MS, MacKown CT (1993) Tillage effects on legume decomposition and transformation of legume and fertilizer Nitrogen-15. Soil Sci Soc Am J 57:750–756

    Article  CAS  Google Scholar 

  • Wagger MG, Cabrera ML, Ranells NN (1998) Nitrogen and carbon cycling in relation to cover crop residue quality. J Soil Water Conserv 53(3):214–218

    Google Scholar 

  • Williams MA, Myrold DD, Bottomley PJ (2006) Distribution and fate of 13C-labeled root and straw residues from ryegrass and crimson clover in soil under western Oregon field conditions. Biol Fertil Soils 42:523–531. doi:10.1007/s00374-005-0046-5

    Article  Google Scholar 

  • Wilson DO, Hargrove WL (1986) Release of nitrogen from crimson clover residue under two tillage systems. Soil Sci Soc Am J 50:1251–1254

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Janet Shurtleff, Dr. Consuelo Arrellano, and North Carolina State University EATS staff for their help with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun D. Jani.

Additional information

Responsible Editor: Martin Weih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, A.D., Grossman, J.M., Smyth, T.J. et al. Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant Soil 393, 57–68 (2015). https://doi.org/10.1007/s11104-015-2473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2473-x

Keywords

Navigation