Skip to main content
Log in

Inhibition of neuronal nitric oxide synthase activity does not alter vasopressin secretion in septic rats

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Background/Purpose

During the early phase of sepsis, hypotension is accompanied by increase of plasma vasopressin hormone (AVP) levels, which decline during the late phase. This hypotension is due in part to increase of nitric oxide (NO) synthesis by nitric oxide synthase (NOS) enzyme. Neuronal isoform of this enzyme (nNOS) is present in vasopressinergics neurons of hypothalamus, but its role in vasopressin secretion during sepsis is unknown.

Methods

We evaluated the role of nNOS in NO production and vasopressin secretion during sepsis. Wistar rats received 7-nitroindazole (50 mg/kg, i.p.), an inhibitor of nNOS activity, or vehicle and were submitted to septic stimulus by cecal ligation and puncture (CLP). At the time points 0, 4, 6, 18 and 24 h after sepsis induction the animals were decapitated and neurohypophysis and hypothalamus were removed for analysis of vasopressin content and NOS activity, respectively. Hematocrit, serum sodium, osmolality, proteins and plasmatic AVP were quantified.

Results

Mortality was not affected by 7-nitroindazole (7-NI). Sodium and plasma proteins levels decreased after CLP and the treatment anticipated the protein loss, and delayed serum sodium decrease. Septic animals treated with 7-NI showed decrease of osmolality 4 h after CLP. Nitric oxide synthase activity in hypothalamus increased at 4 and 24 h after CLP and was reduced with 7-NI. Neurohypophysis content of AVP diminished after CLP and 7-NI did not alter this parameter. Plasma AVP levels increased at 6 h and decreased 18 and 24 h after CLP. Treatment with 7-NI did not alter plasma vasopressin levels.

Conclusion

We concluded that nNOS does not have a substantial role in vasopressin secretion during experimental sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oliveira-Pelegrin GR, Ravanelli MI, Branco LG, Rocha MJ (2009) Thermoregulation and vasopressin secretion during polymicrobial sepsis. Neuroimmunomodulation 16(1):45–53. doi:10.1159/000179666

    Article  CAS  PubMed  Google Scholar 

  2. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. The Lancet 365(9453):63–78. doi:10.1016/S0140-6736(04)17667-8

    Article  CAS  Google Scholar 

  3. Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D (2003) Circulating vasopressin levels in septic shock. Crit Care Med 31(6):1752–1758. doi:10.1097/01.CCM.0000063046.82359.4A

    Article  CAS  PubMed  Google Scholar 

  4. Correa PB, Pancoto JA, de Oliveira-Pelegrin GR, Carnio EC, Rocha MJ (2007) Participation of iNOS-derived NO in hypothalamic activation and vasopressin release during polymicrobial sepsis. J Neuroimmunol 183(1–2):17–25. doi:10.1016/j.jneuroim.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  5. Athayde LA, Oliveira-Pelegrin GR, Nomizo A, Faccioli LH, Rocha MJ (2009) Blocking central leukotrienes synthesis affects vasopressin release during sepsis. Neuroscience 160(4):829–836. doi:10.1016/j.neuroscience.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Ozer, E.K., Iskit, A.B.: Effects of endothelin and nitric oxide on cardiac muscle functions in experimental septic shock model. Human exp toxicol (2015). doi:10.1177/0960327115583363

    Google Scholar 

  7. Wahab F, Tazinafo LF, Carnio EC, Aguila FA, Batalhao ME, Rocha MJ (2015) Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats. Endocrine 49(1):215–221. doi:10.1007/s12020-014-0452-2

    Article  CAS  PubMed  Google Scholar 

  8. Oliveira-Pelegrin GR, de Azevedo SV, Yao ST, Murphy D, Rocha MJ (2010) Central NOS inhibition differentially affects vasopressin gene expression in hypothalamic nuclei in septic rats. J Neuroimmunol 227(1–2):80–86. doi:10.1016/j.jneuroim.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  9. Ceccatelli S (1997) Expression and plasticity of NO synthase in the neuroendocrine system. Brain Res Bull 44(4):533–538

    Article  CAS  PubMed  Google Scholar 

  10. Rothe F, Langnaese K, Wolf G (2005) New aspects of the location of neuronal nitric oxide synthase in the skeletal muscle: a light and electron microscopic study. Nitric oxide 13(1):21–35. doi:10.1016/j.niox.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Geller DA, Billiar TR (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17(1):7–23

    Article  CAS  PubMed  Google Scholar 

  12. Mattila, J.T., Thomas, A.C.: Nitric oxide synthase: non-canonical expression patterns. Front immunol 5, 478 (2014). doi:10.3389/fimmu.2014.00478

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLaren AT, Mazer CD, Zhang H, Liu E, Mok L, Hare GM (2009) A potential role for inducible nitric oxide synthase in the cerebral response to acute hemodilution. Can J Anaesth 56(7):502–509. doi:10.1007/s12630-009-9104-z

    Article  PubMed  Google Scholar 

  14. Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 129(2):83–94. doi:10.1016/j.jphs.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Huttunen R, Hurme M, Laine J, Eklund C, Vuento R, Aittoniemi J, Huhtala H, Syrjanen J (2009) Endothelial nitric oxide synthase G894T (GLU298ASP) polymorphism is associated with hypotension in patients with E. coli bacteremia but not in bacteremia caused by a gram-positive organism. Shock 31(5):448–453. doi:10.1097/SHK.0b013e318188e58e

    Article  CAS  PubMed  Google Scholar 

  16. Martin MJ (2014) Editorial to accompany “Effects of statins on liver cell function and inflammation in septic rats”. J Surg Res 186(1):101–102. doi:10.1016/j.jss.2013.03.055

    Article  PubMed  Google Scholar 

  17. Nemzek JA, Xiao HY, Minard AE, Bolgos GL, Remick DG (2004) Humane endpoints in shock research. Shock 21(1):17–25

    Article  PubMed  Google Scholar 

  18. Palkovits M, Brownstein MJ (1988) Maps and guide to microdissection of the rat brain. Elsevier, New York

    Google Scholar 

  19. Marshall, J.C., Deitch, E., Moldawer, L.L., Opal, S., Redl, H., (2005) van der Poll, T.Preclinical models of shock and sepsis: what can they tell us? Shock 24 Suppl 1, 1–6

    Google Scholar 

  20. Remick, D.G., Ward, P.A (2005) Evaluation of endotoxin models for the study of sepsis. Shock 24 Suppl 1, 7–11

    Google Scholar 

  21. Muenzer JT, Davis CG, Dunne BS, Unsinger J, Dunne WM, Hotchkiss RS (2006) Pneumonia after cecal ligation and puncture: a clinically relevant “two-hit” model of sepsis. Shock 26(6):565–570. doi:10.1097/01.shk.0000235130.82363.ed

    Article  PubMed  Google Scholar 

  22. Hubbard, W.J., Choudhry, M., Schwacha, M.G., Kerby, J.D., Rue, L.W. Bland, K.I, Chaudry, I.H (2005) Cecal ligation and puncture. Shock 24 Suppl 1, 52–57

    Google Scholar 

  23. Torres-Duenas D, Benjamim CF, Ferreira SH, Cunha FQ (2006) Failure of neutrophil migration to infectious focus and cardiovascular changes on sepsis in rats: effects of the inhibition of nitric oxide production, removal of infectious focus, and antimicrobial treatment. Shock 25(3):267–276. doi:10.1097/01.shk.0000208804.34292.38

    Article  CAS  PubMed  Google Scholar 

  24. Nardi GM, Scheschowitsch K, Ammar D, de Oliveira SK, Arruda TB, Assreuy J (2014) Neuronal nitric oxide synthase and its interaction with soluble guanylate cyclase is a key factor for the vascular dysfunction of experimental sepsis. Crit Care Med 42(6):e391–e400. doi:10.1097/CCM.0000000000000301

    Article  CAS  PubMed  Google Scholar 

  25. Enkhbaatar P, Murakami K, Shimoda K, Mizutani A, McGuire R, Schmalstieg F, Cox R, Hawkins H, Jodoin J, Lee S, Traber L, Herndon D, Traber D (2003) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model. Am J Physiol Regul Integr Comp Physiol 285(2):R366–R372. doi:10.1152/ajpregu.00148.2003

    Article  CAS  PubMed  Google Scholar 

  26. Enkhbaatar P, Lange M, Nakano Y, Hamahata A, Jonkam C, Wang J, Jaroch S, Traber L, Herndon D, Traber D (2009) Role of neuronal nitric oxide synthase in ovine sepsis model. Shock 32(3):253–257. doi:10.1097/SHK.0b013e318193e2ba

    Article  CAS  PubMed  Google Scholar 

  27. Southan GJ, Szabo C (1996) Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol 51(4):383–394

    Article  CAS  PubMed  Google Scholar 

  28. Zhang HQ, Fast W, Marletta MA, Martasek P, Silverman RB (1997) Potent and selective inhibition of neuronal nitric oxide synthase by N omega-propyl-L-arginine. J Med Chem 40(24):3869–3870. doi:10.1021/jm970550g

    Article  CAS  PubMed  Google Scholar 

  29. Gocmez, S.S., Yazir, Y., Sahin, D., Karadenizli, S., Utkan, T (2015) The effect of a selective neuronal nitric oxide synthase inhibitor 3-bromo 7-nitroindazole on spatial learning and memory in rats. Pharmacol Biochem Behav 131, 19–25 doi:10.1016/j.pbb.2015.01.013

    Google Scholar 

  30. Zhu, W., Su, J., Liu, J., Jiang, C (2015) The involvement of neuronal nitric oxide synthase in the anti-epileptic action of curcumin on pentylenetetrazol-kindled rats. Biomed Mater Eng 26 Suppl 1, S841–S850 doi:10.3233/BME-151376

  31. Bush MA, Pollack GM (2000) Pharmacokinetics and protein binding of the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole. Biopharmaceutics drug disposition 21(6):221–228

    Article  CAS  PubMed  Google Scholar 

  32. Kalisch BE, Connop BP, Jhamandas K, Beninger RJ, Boegman RJ (1996) Differential action of 7-nitro indazole on rat brain nitric oxide synthase. Neurosci Lett 219(2):75–78

    Article  CAS  PubMed  Google Scholar 

  33. Ventura RR, Giusti-Paiva A, Gomes DA, Elias LL, Antunes-Rodrigues J (2005) Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neurosci Lett 379(2):75–80. doi:10.1016/j.neulet.2004.12.032

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira-Pelegrin GR, Aguila FA, Basso PJ, Rocha MJ (2010) Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides 31(10):1847–1852. doi:10.1016/j.peptides.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  35. Andrew P, Deng Y, Kaufman S (2000) Fluid extravasation from spleen reduces blood volume in endotoxemia. Am J Physiol Regul Integr Comp Physiol 278(1):R60–R65

    CAS  PubMed  Google Scholar 

  36. Martins TF, Sorgi CA, Faccioli LH, Rocha MJ (2011) Leukotriene synthesis inhibitor decreases vasopressin release in the early phase of sepsis. J Neuroimmunol 238(1–2):52–57. doi:10.1016/j.jneuroim.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  37. Xu, L., Carter, E.P., Ohara, M., Martin, P.Y., Rogachev, B., Morris, K., Cadnapaphornchai, M., Knotek, M., Schrier, R.W (2000) Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J physiol-Renal physiol 279(6), F1110–F1115

    Google Scholar 

  38. Bourque CW, Oliet SH, Richard D (1994) Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15(3):231–274. doi:10.1006/frne.1994.1010

    Article  CAS  PubMed  Google Scholar 

  39. Byl B, Roucloux I, Crusiaux A, Dupont E, Deviere J (1993) Tumor necrosis factor alpha and interleukin 6 plasma levels in infected cirrhotic patients. Gastroenterology 104(5):1492–1497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Nadir M. Fernandes, Fabyola Mestriner e Milene Mantovani for the excellent technical assistance. José Antunes-Rodrigues and Lucila L. K. Elias provided the infrastructure for the RIA analyses. Financial support from CNPq and CAPES is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Henriques Coelho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were done following the Ethics Committee of Animal Experimentation at the University of São Paulo (CEUA)-Campus Ribeirão Preto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, C.H., Martins, T.F., Oliveira-Pelegrin, G.R. et al. Inhibition of neuronal nitric oxide synthase activity does not alter vasopressin secretion in septic rats. Pituitary 20, 333–339 (2017). https://doi.org/10.1007/s11102-017-0786-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-017-0786-x

Keywords

Navigation