Skip to main content

Advertisement

Log in

Vasopressin Impairment During Sepsis Is Associated with Hypothalamic Intrinsic Apoptotic Pathway and Microglial Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that in the early phase of sepsis, the plasma concentration of arginine vasopressin (AVP) is increased, but in the late phase, its levels remain inadequately low, despite of persistent hypotension. One hypothesis suggested for this relative deficiency is apoptosis of vasopressinergic neurons. Here, we investigated apoptosis pathways in the hypothalamus during sepsis, as well as mechanisms underlying this process. Male Wistar rats were submitted to sepsis by cecal ligation and puncture (CLP) or nonmanipulated (naive) as control. After 6 and 24 h, the animals were decapitated and brain and blood were collected to assess hypothalamic apoptotic markers, IFN-γ plasma levels, and evidence for breakdown of the blood-brain barrier (BBB). Sepsis caused a decrease in mitochondrial antiapoptotic proteins (Bcl-2, Bcl-xL) in the hypothalamus, but had no effect on markers of cell death mediated by death receptors or immune cells. In the supraoptic nuclei of these animals, microglia morphology was consistent with activation, associated with an increase in plasma IFN-γ. A transitory breakdown of BBB in the hypothalamus was seen at 6 h following CLP. The results indicate that the intrinsic but not extrinsic apoptosis pathway is involved in the cell death observed in vasopressinergic neurons, and that this condition is temporally associated with microglial activation and BBB leaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McCann SM, Kimura M, Karanth S, WH Y, Mastronardi CA, Rettori V (2000) The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann N Y Acad Sci 917:4–18

    Article  CAS  PubMed  Google Scholar 

  2. Kovács KJ (2002) Neurohypophyseal hormones in the integration of physiological responses to immune challenges. Prog Brain Res 139:127–146

    Article  PubMed  Google Scholar 

  3. Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M, Annane D, et al. (2013) Understanding brain dysfunction in sepsis. Ann Intensive Care 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pancoto JA, Corrêa PB, Oliveira-Pelegrin GR, Rocha MJ (2008) Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton Neurosci 138:57–63

    Article  PubMed  Google Scholar 

  5. Oliveira-Pelegrin GR, Ravanelli MI, Branco LG, Rocha MJ (2009) Thermoregulation and vasopressin secretion during polymicrobial sepsis. Neuroimmunomodulation 16:45–53

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira-Pelegrin GR, de Azevedo SV, Yao ST, Murphy D, Rocha MJ (2010) Central NOS inhibition differentially affects vasopressin gene expression in hypothalamic nuclei in septic rats. J Neuroimmunol 227:80–86

    Article  CAS  PubMed  Google Scholar 

  7. Corrêa PB, Pancoto JA, de Oliveira-Pelegrin GR, Cárnio EC, Rocha MJ (2007) Participation of iNOS-derived NO in hypothalamic activation and vasopressin release during polymicrobial sepsis. J Neuroimmunol 183:17–25

    Article  PubMed  Google Scholar 

  8. Wahab F, Tazinafo LF, Cárnio EC, Aguila FA, Batalhão ME, Rocha MJ (2015) Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats. Endocrine 49:215–221

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira-Pelegrin GR, Basso PJ, Rocha MJ (2014) Cellular bioenergetics changes in magnocellular neurons may affect copeptin expression in the late phase of sepsis. J Neuroimmunol 267:28–34

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira-Pelegrin GR, Basso PJ, Soares AS, Martinez MR, Riester KD, Rocha MJ (2013) Cleaved caspase-3 expression in hypothalamic magnocellular neurons may affect vasopressin secretion during experimental polymicrobial sepsis. J Neuroimmunol 258:10–16

    Article  CAS  PubMed  Google Scholar 

  11. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aziz M, Jacob A, Wang P (2014) Revisiting caspases in sepsis. Cell Death Dis 5:e1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  14. Kim R (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333:336–343

    Article  CAS  PubMed  Google Scholar 

  15. Snyder CM, Shroff EH, Liu J, Chandel NS (2009) Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One 4:e7059

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lavrik IN (2014) Systems biology of death receptor networks: live and let die. Cell Death Dis 5:e1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  19. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    Article  CAS  PubMed  Google Scholar 

  20. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    Article  CAS  PubMed  Google Scholar 

  21. Wahab F, Santos-Junior NN, de Almeida Rodrigues RP, Costa LH, Catalão CH, Rocha MJ (2015) Interleukin-1 receptor antagonist decreases hypothalamic oxidative stress during experimental sepsis. Mol Neurobiol. doi:10.1007/s12035-015-9338-4

    PubMed  Google Scholar 

  22. Ryan SO, Cobb BA (2012) Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 34:425–441

    Article  CAS  PubMed  Google Scholar 

  23. Leber B, Lin J, Andrews DW (2010) Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29:5221–5230

    Article  CAS  PubMed  Google Scholar 

  24. Keogh SA, Walczak H, Bouchier-Hayes L, Martin SJ (2000) Failure of Bcl-2 to block cytochrome c redistribution during TRAIL-induced apoptosis. FEBS Lett 471:93–98

    Article  CAS  PubMed  Google Scholar 

  25. Wong ML, Rettori V, al-Shekhlee A, Bongiorno PB, Canteros G, McCann SM, et al. (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2:581–584

    Article  CAS  PubMed  Google Scholar 

  26. Wong ML, Bongiorno PB, Rettori V, McCann SM, Licinio J (1997) Interleukin (IL) 1beta, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: pathophysiological implications. Proc Natl Acad Sci U S A 94:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mander P, Brown GC (2004) Nitric oxide, hypoxia and brain inflammation. Biochem Soc Trans 32:1068–1069

    Article  CAS  PubMed  Google Scholar 

  28. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    Article  CAS  PubMed  Google Scholar 

  29. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97:9082–9087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  31. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eggen BJ, Raj D, Hanisch UK, Boddeke HW (2013) Microglial phenotype and adaptation. J NeuroImmune Pharmacol 8:807–823

    Article  CAS  PubMed  Google Scholar 

  33. Basu A, Krady JK, Enterline JR, Levison SW (2002) Transforming growth factor beta1 prevents IL-1beta-induced microglial activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia 40:109–120

    Article  PubMed  Google Scholar 

  34. Moraes CA, Santos G, Spohr TC, D’Avila JC, Lima FR, Benjamim CF, et al. (2014) Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis. Mol Neurobiol 52:653–663

    Article  PubMed  Google Scholar 

  35. Mina F, Comim CM, Dominguini D, Cassol-Jr OJ, Dall Igna DM, Ferreira GK, et al. (2014) Il1-β involvement in cognitive impairment after sepsis. Mol Neurobiol 49:1069–1076

    Article  CAS  PubMed  Google Scholar 

  36. Liu W, Tang Y, Feng J (2011) Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci 89:141–146

    Article  CAS  PubMed  Google Scholar 

  37. Flierl MA, Rittirsch D, Weckbach S, Huber-Lang M, Ipaktchi K, Ward PA, et al. (2011) Disturbances of the hypothalamic-pituitary-adrenal axis and plasma electrolytes during experimental sepsis. Ann Intensive Care 1:53

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, et al. (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29:309–316

    Article  CAS  PubMed  Google Scholar 

  39. Cardoso FL, Kittel A, Veszelka S, Palmela I, Tóth A, Brites D, et al. (2012) Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 7:e35919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Michels M, Danieslki LG, Vieira A, Florentino D, Dall’Igna D, Galant L, et al. (2015) CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 21:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Candelario-Jalil E, Taheri S, Yang Y, Sood R, Grossetete M, Estrada EY, et al. (2007) Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323:488–498

    Article  CAS  PubMed  Google Scholar 

  42. Minami T, Okazaki J, Kawabata A, Kawaki H, Okazaki Y, Tohno Y (1998) Roles of nitric oxide and prostaglandins in the increased permeability of the blood-brain barrier caused by lipopolysaccharide. Environ Toxicol Pharmacol 5:35–41

    Article  CAS  PubMed  Google Scholar 

  43. Boje KM, Lakhman SS (2000) Nitric oxide redox species exert differential permeability effects on the blood-brain barrier. J Pharmacol Exp Ther 293:545–550

    CAS  PubMed  Google Scholar 

  44. Manaenko A, Fathali N, Khatibi NH, Lekic T, Hasegawa Y, Martin R, et al. (2011) Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int 58:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeynalov E, Jones SM, Seo JW, Snell LD, Elliott JP (2015) Arginine-vasopressin receptor blocker Conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS One 10:e0136121

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dal-Pizzol F, Rojas HA, dos Santos EM, et al. (2013) Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol Neurobiol 48:62–70

    Article  CAS  PubMed  Google Scholar 

  47. Comim CM, Vilela MC, Constantino LS, et al. (2011) Traffic of leukocytes and cytokine up-regulation in the central nervous system in sepsis. Intensive Care Med 37:711–718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nadir Martins for general technical assistance and Elizabete Rosa Milani for help with laser confocal microscopy. Financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) is gratefully acknowledged (grant 2012/22246-9). LHAC has received a FAPESP scholarship (grant 2013/03723-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Alves da Rocha.

Ethics declarations

This study involves the use of rats. All animal experiments in this study were carried out according to an Institutional Ethics Committee-approved protocol (CEUA protocol number 13.1.337.53.0).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, L.H.A., Júnior, N.N.d.S., Catalão, C.H.R. et al. Vasopressin Impairment During Sepsis Is Associated with Hypothalamic Intrinsic Apoptotic Pathway and Microglial Activation. Mol Neurobiol 54, 5526–5533 (2017). https://doi.org/10.1007/s12035-016-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0094-x

Keywords

Navigation